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Abstract

Given a finite-dimensional algebra A we may associate to it a special

endomorphism algebra, RA, introduced by Auslander. The algebra RA is

a “Schur-like” algebra for A: it contains A as an idempotent subalgebra

(up to Morita equivalence) and it is quasihereditary with respect to a

particular heredity chain.

The main purpose of this thesis is to describe the quasihereditary struc-

ture of RA which arises from such heredity chain, and to investigate the

corresponding Ringel dual of RA. It turns out that RA belongs to a certain

class of strongly quasihereditary algebras defined axiomatically, which we

call ultra strongly quasihereditary algebras. We derive the key proper-

ties of ultra strongly quasihereditary algebras, and give examples of other

algebras which fit into this setting.
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Introduction

Motivation and aim

Quasihereditary algebras were introduced in [15] by Cline, Parshall and Scott, in

order to deal with highest weight categories arising in the representation theory of

Lie algebras and algebraic groups. This notion was extensively studied by Dlab and

Ringel ([20], [18], [21], [25, Appendix]). Since the introduction of quasihereditary

algebras, many classes of algebras arising naturally were shown to be quasihereditary.

A prototype for quasihereditary algebras are the Schur algebras, whose highest

weight theory is that of general linear groups. The Schur algebra can be constructed

as the endomorphism algebra of a module over the group algebra of a finite symmetric

group.

One may ask whether there are analogues of Schur algebras for arbitrary finite-

dimensional algebras. That is, given a finite-dimensional algebra A over a field K,

we would like to have an A-module whose endomorphism algebra is quasihereditary,

so that it has a highest weight theory. Such a module was introduced by Auslander

in [5] and he showed that its endomorphism algebra has finite global dimension.

Subsequently, Dlab and Ringel proved that this endomorphism algebra is actually a

quasihereditary algebra ([18]). The algebra in question is easy to define, namely one

can take the endomorphism algebra of the direct sum of all radical powers,

G =
⊕
i: i≥0

A/RadiA

(for practical purposes one takes the opposite of the basic version of this algebra).

We denote this “Schur-like” endomorphism algebra by RA and call it the Auslander–

Dlab–Ringel algebra (ADR algebra) of A. The original algebra A is then Morita

equivalent to ξRAξ for an idempotent ξ in RA, and this is also analogous to the

situation of symmetric groups and Schur algebras.

In this dissertation we study the ADR algebra RA for an arbitrary finite-dimen-

sional algebra A. The main goal is to understand its highest weight theory.
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Short digression on quasihereditary algebras

Quasihereditary algebras are the algebra analogues of a highest weight category. To

be precise, the category of modules over a quasihereditary algebra is a highest weight

category ([15]).

The most quoted definition of a quasihereditary algebra is as follows. Suppose B

is an algebra with simple modules Li, i ∈ Φ, where the set Φ has a linear ordering

v. Let Pi be the indecomposable projective module with simple quotient isomorphic

to Li. Then the standard module ∆ (i) is defined to be the largest quotient of Pi all

of whose composition factors are of the form Lj, with j v i. Dually, the costandard

module ∇ (i) is the largest submodule of the injective hull Qi of Li all of whose

composition factors are of the form Lj, with j v i. These notions make sense in

general, but the standard (and costandard) modules depend on the order (Φ,v).

Definition. The algebra B is quasihereditary with respect to (Φ,v) if, for all i ∈ Φ,

1. Li occurs only once as a composition factor of ∆ (i);

2. Pi has a filtration whose factors are standard modules.

There is an alternative definition of quasihereditary algebra which only requires Φ

to be endowed with a partial order. This other version, which will be used throughout

the thesis, involves a technicality and will be discussed in Section 1.4.

Assume that B is a quasihereditary algebra with respect to some order (Φ,v).

Let F (∆) be the category of all B-modules which have a filtration whose factors are

standard modules. The category F (∇) is defined similarly. These two categories are

of central interest.

In [50], Ringel has proved that the intersection F (∆)∩F (∇) contains only finitely

many indecomposable modules, and these are labelled by “highest weights”: the

module T (i) for i ∈ Φ has only composition factors of the form Lj, with j v i, and

the composition factor Li occurs once in T (i). In the context of algebraic Lie theory,

a module in F (∆)∩F (∇) is called a “tilting module”. We follow the same practice

in this thesis. The tilting modules T (i) play a central role in the understanding of

decomposition numbers in Lie Theory.

Ringel proved that the endomorphism algebraR (B) = EndB
(⊕

i∈Φ T (i)
)

is again

quasihereditary (now with respect to the opposite order, (Φ,v op)). The algebra

R (B) is called the Ringel dual of B, and the Ringel dual ofR (B) is Morita equivalent

to B ([50]).
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Main contributions

The ADR algebra RA is quasihereditary – this was proved by Dlab and Ringel in

[18] using a notion of quasihereditary algebra different from the one given here. The

only additional key result which we found in the literature (and used) on RA is a

theorem due to Smalø, which describes the RA-module HomA (G,A/RadA) ([57]).

Otherwise, the results which we now describe are new, but of course we make use of

general theory.

We prove that the standard modules over RA are uniserial and that the category

F (∆) is closed under submodules. Ringel calls a quasihereditary algebra B for which

F (∆) is closed under submodules a “right strongly quasihereditary algebra”, and

Dlab and Ringel give various characterisations of such algebras ([19], [51]). The fact

that the category F (∆) is closed under submodules seems to suggest that this is

a large category. Indeed, the category of A-modules embeds into F (∆): for every

A-module M , the RA-module HomA (G,M) is in F (∆). The tilting modules over

the ADR algebra RA have a very nice structure. We show that each indecomposable

tilting module has a unique filtration by costandard modules, and that the indecom-

posable tilting modules labelled by a maximal weight are injective.

We have placed these results into a more general context by introducing a class of

algebras defined axiomatically. It turns out that the class of quasihereditary algebras

(B,Φ,v) satisfying the axioms below for all i ∈ Φ

(A1) Rad ∆ (i) lies in F (∆);

(A2) if ∆ (i) is simple, then the injective hull of ∆ (i) has a filtration by standard

modules;

properly contains RA and encapsulates its main properties. According to Dlab and

Ringel ([19]), condition (A1) is satisfied if and only if the category of modules with

a ∆-filtration is closed under submodules (i.e. if and only if B is a right strongly

quasihereditary algebra). This prompts the following definition.

Definition. A quasihereditary algebra (B,Φ,v) is right ultra strongly quasihereditary

(RUSQ, for short) if it satisfies axioms (A1) and (A2).

We prove several properties for RUSQ algebras, and for their Ringel duals. We

show that the standard modules are uniserial and that the simple modules can be

labelled in a natural way by pairs (i, j) so that ∆ (i, j) has radical ∆ (i, j + 1) for

1 ≤ j < li and ∆ (i, li) is simple. The next result summarises some of our findings.

3



Theorem. Let B be a RUSQ algebra. The injective hull Qi,li of the simple B-module

with label (i, li) lies in F (∆) ∩ F (∇) (that is, Qi,li is a tilting module). Moreover,

the chain of inclusions

0 ⊂ T (i, li) ⊂ · · · ⊂ T (i, j) ⊂ · · · ⊂ T (i, 1) = Qi,li ,

where T (i, j) is the tilting module corresponding to the label (i, j), is the unique fil-

tration of Qi,li by costandard modules. For 1 ≤ j < li, the injective hull Qi,j of the

simple module with label (i, j) is isomorphic to Qi,li/T (i, j + 1).

In addition, the Ringel dual R (B) of B is such that R (B) op is still a RUSQ

algebra.

The ADR algebra RA is described in detail, by quiver and relations, when A is the

group algebra of the symmetric group Σp and the underlying field K has characteristic

p. The algebra obtained is, naturally, different from the Schur algebra SK (p, p).

We also determine the projective covers of a large class of modules over the ADR

algebra. For an A-module M , the projective cover of the RA-module HomA (G,M)

is the image of a map ε through the functor HomA (G,−). The morphism ε is a

special kind of map: it is a right minimal addG-approximation (see [7]). We describe

the addG-approximations of rigid A-modules. Note that a module is rigid if its

descending radical series is equal to its ascending radical series.

Theorem A. Let M be a rigid A-module with radical length m. Then the projective

cover of M as an (A/RadmA)-module is a right minimal addG-approximation of M .

This last result is then used to provide a counterexample to a claim by Auslander,

Platzeck and Todorov in [6] about the projective resolutions of modules over the ADR

algebra, for which no arguments were given.

Theorem A is also a key ingredient in the proof of the following central result of

this thesis.

Theorem B. Suppose that all indecomposable projective and injective A-modules have

the same radical length, and are also rigid. Then the Ringel dual R(RA) of RA is

isomorphic to the algebra (RAop)
op.

In order to establish this theorem, we prove some auxiliary results of independent

interest. Namely, we fully describe the filtrations by standard modules of the tilting

RA-modules in the case where all the projective indecomposable A-modules are rigid

and have the same radical length.
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Our work on the ADR algebra is also compared with existing literature. For

example, we explain why one should not expect the ADR algebra to be isomorphic

to its own Ringel dual, contrary to what happens often for quasihereditary algebras

arising from semisimple Lie algebras and algebraic groups. Furthermore, we look into

the representation type of the categories F (∆) and F (∇), in connection with the

representation type of A.

The ADR algebras, the quasihereditary algebras described by Iyama in [39] (used

to prove the finiteness of the representation dimension), and the cluster-tilted algebras

studied in [32], [31] and [40] are all examples of strongly quasihereditary algebras.

We conclude this thesis by showing that all these algebras are instances of a generic

construction which produces strongly quasihereditary endomorphism algebras.

Outline of the chapters

Chapter 1 is designed to provide the reader with the necessary background. It intro-

duces basic concepts of representation theory, the language of preradicals, and the

fundamentals of quasihereditary algebras.

In Chapter 2, we begin the study of the quasihereditary structure of RA that stems

from the heredity chain in [18]. We show that the ADR algebra is a RUSQ algebra,

as stated previously. We then proceed to derive the basic properties of the tilting

modules and of the injective modules over arbitrary RUSQ algebras (Theorem 2.5.8,

Proposition 2.5.11), and we investigate the Ringel dual of such algebras (Theorem

2.6.1). We also compute RA when A is a certain Brauer tree algebra.

Chapter 3 is devoted to explore the connection between the Ringel dual of RA

and the ADR algebra of Aop. We show that Ringel dual of RA is isomorphic to

(RAop)
op under certain regularity conditions for A (Theorem B). In order to prove this,

we study the ∆-filtrations of modules over RUSQ algebras (Corollary 3.2.3, Lemma

3.2.15, Theorem 3.4.5), and the projective covers of the RA-modules HomA (G,M)

for M a rigid A-module (Theorem A). Along the way, we give a counterexample to a

remark by Auslander–Platzeck–Todorov in [6].

In Chapter 4 we answer further natural questions about the ADR algebra and

relate our work to relevant literature (Section 4.2). We also lay the basis for some of

the problems investigated in Chapter 5 (Section 4.3).

In Chapter 5, we describe a general way of constructing strongly quasihereditary

endomorphism algebras (Theorem 5.2.8). We show that the ADR algebras, the alge-

bras constructed by Iyama in [39], and the cluster-tilted algebras studied in [32], [31]

and [40] all fit into our setting. Moreover, we provide sufficient conditions for which

5



the algebras obtained by our construction are ultra strongly quasihereditary algebras

(Theorem 5.4.5).

A list of notation and an index may be found at the end of the thesis.
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Chapter 1

Background and notation

1.1 Overview of the chapter

This chapter contains notation, remarks and standard results which will be used

constantly throughout this thesis. Section 1.2 discusses the fundamentals of algebras,

Artin algebras and their representations. Section 1.3 contains material on preradicals

and Section 1.4 deals with basic material on quasihereditary algebras.

The theory developed in this thesis is mainly aimed at finite-dimensional algebras

over a field. However, for most of this dissertation, we work with slightly more general

classes of rings. The reason for this is that the added generality considerably widens

the applicability of the theory, but requires minimal extra effort.

The notion of quasihereditary algebra is ubiquitous in this thesis. Quasiheredi-

tary algebras originated from the study of the category O, the category of rational

representations of an algebraic group, and also from the study of Schur algebras.

There are many different ways of defining a quasihereditary algebra, but they turn

out to be equivalent. The most often used definition of a quasihereditary algebra

involves labelling the simple modules by a linearly ordered set. We define quasihered-

itary algebras using partially ordered sets instead, as these are better suited for our

purposes.

The language and formalism of preradicals will also be particularly convenient

to us, specially in Chapters 3 and 5, and more generally when dealing with quasi-

hereditary algebras. The concept of a preradical is closely tied to that of a torsion

theory.

The results in this chapter are classic and part of the “mathematical folklore”.

However, proofs are provided where no precise references are known.

7



1.2 Algebras and Artin algebras

We start by giving the definition of an algebra and of an Artin algebra, and by recalling

some of their basic properties. Our chosen definition of algebra is quite broad. It

covers not only the class of Artin algebras, but also infinite-dimensional algebras

over a field, namely infinite-dimensional path algebras and bound quiver algebras.

The notion of an Artin algebra is a generalisation of that of a finite-dimensional

algebra over a field. Artin algebras have a well-developed representation theory,

which includes a consistent left-right symmetry and duality theory.

1.2.1 Definitions and basic properties

Definition 1.2.1 ([8, II.1]). Let C be a commutative artinian ring with unit. A

C-algebra A is a ring with unit, together with a (unit preserving) ring morphism

φ : C −→ A whose image is in the centre of A. For c ∈ C and a ∈ A, write ca for

φ(c)a. A C-algebra A is said to be an Artin algebra if A is finitely generated as a

module over C.

For most of this dissertation we work with Artin algebras, having in mind ap-

plications to finite-dimensional algebras. The only exception to this is in Chapter

5. There, our initial setting is general enough to incorporate infinite-dimensional

algebras over a field, and in particular the preprojective algebra.

Denote the category of left modules over a C-algebra A by ModA. Every A-

module is a C-module in a canonical way. Let modA be the category of all left

A-modules which are finitely generated over C. Evidently, the modules in modA are

finitely generated A-modules.

If A is an Artin algebra, then the modules in modA are exactly the finitely

generated A-modules. In particular, A lies in modA, and A is both a left and a right

artinian ring (see [8, II.1] for the latter assertion). For a field K and a K-algebra A

(possibly infinite-dimensional over K), modA corresponds to the category of finite

dimensional A-modules.

We give a brief list of basic properties of the category modA, and refer to the

textbooks [2] and [8] for further details.

Proposition 1.2.2. Let A be a C-algebra. The following holds:

1. the modules in modA have finite length (i.e. they have a composition series);

8



2. every monic (resp. epic) endomorphism of a module in modA is an isomor-

phism;

3. every module in modA has a decomposition as a direct sum of a finite number

of indecomposable modules in modA, which is unique up to isomorphism and

permutation of the summands;

4. the indecomposable modules in modA are exactly the modules in modA with

local endomorphism ring;

5. the category modA is a Krull-Schmidt abelian subcategory of the abelian cate-

gory ModA;

6. for M and N in modA, HomA (M,N) is a finitely generated C-module,

7. for M and N in modA, the endomorphism algebra Γ = EndA (M) op is an Artin

C-algebra and HomA (M,N) lies in mod Γ;

Proof. Let M be a module in modA. Since C is artinian, then, by Hopkins’ Theorem

([2, Theorem 15.20]), C is also noetherian. Since M is finitely generated over C, then

it is both artinian and noetherian as a C-module (see Propositions 10.18 and 10.19 in

[2]). Consequently, M satisfies both the ascending and the descending chain condition

as an A-module (since chains of A-modules are in particular chains of C-modules).

By Proposition 11.1 in [2], M has finite length as an A-module. This proves the

statement of part 1.

Part 2 corresponds to Proposition 1.4 in [8, I]. Parts 3, 4 and 5 basically coincide

with the statement of the Krull-Schmidt Theorem (see Theorem 12.9, Lemma 12.8,

Corollary 11.8, Lemma 12.8 and Corollary 11.2 in [2]).

For the proof of parts 6 and 7 we follow the reasoning in the proof of Proposition

1.1 in [8]. It is easy to check that HomA (M,N) is a C-submodule of HomC (M,N).

We show that HomC (M,N) is finitely generated as a C-module. By Proposition

10.19 in [2], it will then follow that HomA (M,N) is a finitely generated C-module

as well. Since M is finitely generated over C, there is an epimorphism of C-modules

Cn −→ M , for some n ∈ Z≥0. This gives rise to a monomorphism of C-modules

HomC (M,N) −→ HomC (Cn, N), where HomC (Cn, N) ∼= Nn. The C-module Nn is

finitely generated. Proposition 10.19 in [2] implies that HomC (M,N) is also a finitely

generated C-module.

For part 7, note that EndA (M) is a C-subalgebra of EndC (M). By part 6, these

two algebras are finitely generated over C, hence they are Artin algebras. The abelian
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group HomA (M,N) is a Γ-module, and it is finitely generated over C by part 6. This

concludes the proof of the proposition.

Throughout this dissertation the letters A and B will be used to denote C-algebras

and Artin algebras, with the letter B mainly reserved for quasihereditary algebras.

The letter K represents a field, and we will often specialise to finite-dimensional

algebras over a field whenever it is convenient. The term module will designate a left

module over some algebra. Virtually all A-modules studied in this thesis lie in modA,

and, by default, all modules are assumed to be in modA. The notation [M : L] will be

used for the multiplicity of a simple module L in the composition series of a module

M in modA.

We say that a class of modules (or a single module) Θ generates a module M if

M is the image of an epic whose domain is a direct sum of modules in Θ. Dually, we

say that Θ cogenerates M if there is a monic from M to a direct product of modules

in Θ. For a module M in modA, these direct sums and direct products of modules

in Θ can be assumed to be finite, that is, they can be reduced to finite direct sums

(see Propositions 10.10, 10.1 and 10.2 in [2]).

Given M in modA, denote the radical of M by RadM , that is, let RadM be the

smallest submodule of M such that M/RadM is semisimple. We call the semisimple

module M/RadM the top of M , and denote it by TopM . Finally, let SocM denote

the socle of M , i.e. let SocM be the largest semisimple submodule of M . The

operators Radi(−) and Soci(−) are defined recursively by the identities RadiM =

Rad(Radi−1M) and SociM/ Soci−1M = Soc(M/ Soci−1M).

1.2.1.1 Properties of Artin algebras

Suppose now that A is an Artin C-algebra. Let J be the direct sum of all the

injective indecomposable C-modules, with one representative from each isomorphism

class. Denote by D the functor

HomC (−, J) : modA −→ (mod(Aop)) op.

The functor D induces an equivalence of categories, or, in other words, it induces a

duality between modA and mod(Aop) (see [8, II.3]). We call D the standard duality

for Artin algebras. If A is a finite-dimensional algebra over a field K, this functor

reduces to the vector space duality HomK (−, K).

Every module in modA is generated by some projective in modA. The existence

of the duality D implies that every module in modA is also cogenerated by some

10



injective in modA. Let L1, . . . , Ln be a complete set of nonisomorphic simple A-

modules. We shall denote the projective cover of Li (resp. the injective hull of Li) by

Pi (resp. by Qi).

Proposition 1.2.3 ([8, III, Proposition 1.15]). Let A be an Artin algebra. Using the

previous notation, the following numbers are the same:

1. dimEndA(Lj) Ext1
A (Li, Lj);

2. [RadPi/Rad2 Pi : Lj];

3. the multiplicity of Pj as a summand of the projective cover of RadPi.

The following numbers are the same:

1. dimEndA(Li)op Ext1
A (Li, Lj);

2. [Soc2Qj/ SocQj : Li];

3. the multiplicity of Qi as a summand of the injective hull of Qj/ SocQj.

1.2.2 Approximations

The concept of (minimal) approximation was introduced by Auslander and Smalø

([9]), and independently by Enochs ([27]). Approximations arise naturally in repre-

sentation theory, in particular in tilting theory.

Let A be an algebra. A map f : M −→ N in modA is called a right minimal mor-

phism if every endomorphism g : M −→M satisfying f = f ◦ g is an automorphism.

Dually, f : M −→ N in modA is left minimal if an endomorphism g : N −→ N is an

automorphism whenever f = g ◦ f . See [9, Section 1] or [7, Proposition 1.1] for the

key properties of minimal morphisms. Note, in particular, that nonzero morphisms

with indecomposable domain (resp. codomain) are always right minimal (resp. left

minimal).

Let now X be a class of modules in modA. A morphism f : X −→M in modA,

with X in X , is said to be a right X -approximation of M if

HomA (X ′, X) HomA (X ′,M) 0
HomA(X′,f)

is exact for all X ′ in X . Finally, say that a map is a right minimal X -approximation

if it is both a right X -approximation and a right minimal morphism. It follows

directly from the definition that right minimal X -approximations are unique up to

11



isomorphism (if they exist). That is, given right minimal X -approximations f1 and

f2 of a module M in modA there is an isomorphism g satisfying f1 = f2 ◦ g.

Similarly, a map f : M −→ X, with X in X , is a left X -approximation of M

if every morphism g : M −→ X ′, with X ′ in X , factors through f . Left minimal

X -approximations are defined as naturally expected, and they are also unique up to

isomorphism (in case they exist).

1.2.3 Projectivisation

Let M be in modA. Passing from the C-algebra A to the Artin C-algebra Γ :=

EndA (M) op turns questions about the module M into questions about projective

modules. This correspondence is established via the functor

HomA (M,−) : modA −→ mod Γ,

which is left exact and commutes with finite direct sums.

Let Θ be a class of modules in modA. Denote the additive closure of Θ by add Θ,

that is, let add Θ be the full subcategory of modA whose modules are isomorphic

to summands of finite direct sums of modules in Θ. The additive closure of a single

module M is denoted by addM .

Proposition 1.2.4. The functor HomA (M,−) has the following properties:

1. for X in addM and N in modA, the functor HomA (M,−) induces an isomor-

phism of C-modules

HomA (X,N) −→ HomΓ (HomA (M,X) ,HomA (M,N)) ;

2. if X is in addM , then HomA (M,X) lies in proj Γ, the full subcategory of

projective modules in mod Γ;

3. the restriction of the functor HomA (M,−) to addM induces an equivalence of

categories

HomA (M,−) : addM −→ proj Γ;

4. for N in modA, the maps in part 1 take right addM-approximations of N to

epimorphisms, and vice versa; this bijective correspondence takes right mini-

mal addM-approximations to projective covers; in particular, right (minimal)

addM-approximations do exist.
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Proof. Parts 1 to 3 correspond to the statement of Proposition 2.1, in Chapter II

of [8] – although our setting is slightly more general, the proof in [8] works without

requiring any changes. Part 4 follows from the definition of right approximation and

right minimal morphism, from the additivity of the Hom functors and from part 1.

1.3 Preradicals

Preradicals generalise the classic notions of radical and socle of a module. The results

and definitions stated in this section are elementary and most of the proofs may

be found in [11], [14, Chapter 2] and [59, Chapter VI]. Throughout this section, C
generically represents the category ModB or the category modB, where B is some

C-algebra. The methods employed can be easily adapted to complete and cocomplete

abelian categories – see [59, Chapter VI].

1.3.1 Definition and first properties

Definition 1.3.1. A preradical τ in C is a subfunctor of the identity functor 1C,

i.e., τ assigns to each module M in C a submodule τ (M), such that each morphism

f : M −→ N in C induces a morphism τ (f) : τ (M) −→ τ (N) given by restriction.

Obviously, every preradical in ModB can be restricted to a preradical in modB.

A submodule N of a module M in ModB is called a characteristic submodule of

M if f (N) ⊆ N , for every f in EndB (M). By definition, it is clear that the module

τ (M) is a characteristic submodule of M , for every preradical τ in C and for every

M in C. It is also evident that every preradical is an additive functor which preserves

monics.

To each preradical τ in C we may associate the functor

1/τ : C −→ C, (1.1)

which maps M in C to M/τ (M). Note that the functor 1/τ preserves epics.

Example 1.3.2. For any class Θ of modules in ModB, the operators defined by

Tr (Θ,M) :=
∑

f : f∈HomB(U,M), U∈Θ

Im f,

Rej (M,Θ) :=
⋂

f : f∈HomB(M,U), U∈Θ

Ker f,
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for M in C, are preradicals in C (see [2, §8] for further details on these functors). Note

that the module Tr (Θ,M), called the trace of Θ in M , is the largest submodule of M

generated by Θ. Symmetrically, Rej (M,Θ), the reject of Θ in M , is the submodule

N of M such that M/N largest factor module of M cogenerated by Θ. If ε is a

complete set of simples in modB, then Tr (ε,M) = SocM and Rej (M, ε) = RadM

for M in modB.

The statements below are easy consequences of the definition of preradical.

Lemma 1.3.3. Let τ be a preradical in C. Suppose that N and M are in C, with

N ⊆M , and let (Mi)i∈I be a finite family of modules in C. The following holds:

1. if τ (N) = N , then N ⊆ τ (M);

2. if τ (M/N) = 0, then τ (M) ⊆ N ;

3. τ
(⊕

i∈IMi

)
=
⊕

i∈I τ (Mi);

4. τ (B) is an ideal of B (assuming that B is in C);

5. τ (B)M ⊆ τ (M) (assuming that B is in C).

Proof. Parts 1 and 2 are straightforward and part 3 follows from the fact that pre-

radicals are additive functors.

Suppose that B is in C. For part 4, note that τ (B) is a left ideal of B. Let

b ∈ B and consider the morphism rb : B −→ B given by right multiplication by b.

The module τ (B) is invariant under the action of rb, i.e. we have rb (τ (B)) ⊆ τ (B).

Hence τ (B) is a right ideal of B, and part 4 holds.

Let now m be in M and consider the map rm : B −→ M given by rm(b) = bm,

b ∈ B. We have that

τ (B)m = rm(τ (B)) ⊆ τ (M) .

This proves part 5.

To a preradical τ in C we associate the classes

Tτ := {N ∈ C : τ (N) = N},

Fτ := {N ∈ C : τ (N) = 0}.

The class Tτ is called the pretorsion class of τ and Fτ is called the pretorsion free

class of τ .
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1.3.2 Hereditary and cohereditary preradicals

We shall now look at preradicals which satisfy specific properties.

Definition 1.3.4. A preradical τ in C is called idempotent if τ ◦τ = τ . Symmetrically,

we say that τ is a radical if τ ◦ (1/τ) = 0.

Example 1.3.5. Note that the functor Soc (−) is an idempotent preradical in modB.

Similarly, the functor Rad (−) is a radical in modB.

Remark 1.3.6. More generally, the functor Tr (Θ,−) is an idempotent preradical in C
for every class of modules Θ in ModB. Furthermore, if τ is an idempotent preradical

in C, then τ = Tr (Tτ ,−). These assertions are easy to check. For a reference consult,

for instance, [14, Proposition 6.8].

Similarly, a preradical τ is a radical in C if and only if it can be defined as

Rej (−,Θ), for some class of modules Θ in C. Namely, if τ is a radical, then τ =

Rej (−,Fτ ).

Note that τ (N) ⊆ N ∩ τ (M) for M and N in C satisfying N ⊆M . Moreover, by

applying τ to the canonical epic M −→ M/N , we conclude that (τ (M) +N) /N ⊆
τ (M/N).

Definition 1.3.7. A preradical τ in C is hereditary if τ (N) = N ∩ τ (M), for all M

and N in C such that N ⊆ M . Dually, a preradical τ in C is said to be cohereditary

if (τ (M) +N) /N = τ (M/N) for N ⊆M , M and N in C.

Example 1.3.8. The functors Soc (−) and Rad (−) are the typical examples of a

hereditary preradical and of a cohereditary preradical in modB, respectively.

Lemma 1.3.9. Let τ be a preradical in C. The following statements are equivalent:

1. τ is hereditary;

2. τ is a left exact functor;

3. the functor 1/τ preserves monics.

Moreover, any hereditary preradical is idempotent.

Proof. If τ is hereditary then τ (τ (M)) = τ (M)∩τ (M) = τ (M), i.e. τ is idempotent.

We prove that assertion 1 implies assertion 2. For this, consider a short exact

sequence in C,
0 N M N ′ 0

f g
.
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Recall that τ preserves monics. Hence, it suffices to prove that Ker τ (g) ⊆ Im τ (f).

Note that

Ker τ (g) = Ker g ∩ τ (M) = τ (Ker g) = τ (Im f) ,

where the second equality follows from the fact that τ is hereditary. Let f | be the

map obtained from f by restricting its codomain to Im f . Since τ is a functor, it

preserves isomorphisms, so τ(f |) is an isomorphism. In particular, Im τ(f |) = τ(Im f).

Furthermore, observe that Im τ(f |) = Im τ (f). This proves the implication.

To see that assertion 3 follows from assertion 2, consider a monic f : N −→ M .

Because τ is left exact, the short exact sequence

0 N M Coker f 0
f π

is mapped to the exact sequence

0 τ (N) τ (M) τ (Coker f)
τ(f) τ(π)

.

Let n ∈ N be such that f(n) ∈ τ (M) (so (τ(π))(f(n)) is defined). We claim that

n ∈ τ (N). We have that

(τ (π)) (f(n)) = π (f(n)) = 0,

hence f(n) lies in Ker τ (π) = Im τ (f) = f (τ (N)). Because f is monic, n must be

in τ (N). This proves that the map 1/τ (f) : N/τ (N) −→M/τ (M) is monic.

For the last implication, let N be a submodule of M . By assumption, the functor

1/τ sends the inclusion map to the monomorphism ι : N/τ (N) −→ M/τ (M). We

claim that N ∩ τ (M) ⊆ τ (N). Let n ∈ N ∩ τ (M). We have that n + τ (N) lies in

Ker ι = 0, so n lies in τ (N).

Remark 1.3.10. There is a result “dual” to Lemma 1.3.9 for cohereditary predicals in

C: a preradical τ is cohereditary if and only if 1/τ is a right exact functor, if and only

if the functor τ preserves epics. Furthermore, cohereditary preradicals are radicals.

Example 1.3.11. Let P be a class of projective modules in ModB. Given N ⊆ M

in C, any map f : P −→ M/N , with P in P , lifts to a map f ′ : P −→ M . So

Im f = (Im f ′ +N) /N , thus

Tr (P ,M/N) ⊆ (Tr (P ,M) +N) /N,

i.e. Tr (P ,−) is a cohereditary preradical in C. By Remark 1.3.6, the preradical

Tr (P ,−) is also idempotent. Similarly, for a class Q of injective modules in ModB,

the functor Rej (−,Q) is a hereditary preradical which is also a radical.
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Remark 1.3.12. Let B be an Artin algebra and let P be a class of projective modules in

modB. Observe that Tr (P ,M) = Tr (P , B)M for M in modB. Moreover, Tr (P , B)

is an idempotent ideal of B. To prove these claims, consider an epic f : Bn −→ M ,

n ∈ Z>0 (such a map always exists). According to the previous example, τ :=

Tr (P ,−) is a cohereditary preradical. Thus, the map τ (f) is still an epic. So

τ (M) = f (τ (Bn)) = f ((τ (B))n)

= f (τ (B) (Bn)) = τ (B) f (Bn)

= τ (B)M.

In particular, we get that (τ (B))2 = τ(τ(B)). Finally, note that τ (τ (B)) = τ (B),

as Tr (P ,−) is an idempotent preradical.

It is possible to construct hereditary (and cohereditary) preradicals out of special

classes of modules.

Definition 1.3.13. A class N of modules in modB is hereditary if every submodule

of a module in addN is generated by N. Dually, a class H of modules in modB is

cohereditary if every factor module of a module in addH is cogenerated by H.

Lemma 1.3.14. If N is a hereditary class of modules in modB then Tr (N,−) is a

hereditary preradical in modB.

Proof. Consider N ⊆ M , with M and N in modB. The module Tr (N,M) is gen-

erated by some module M ′ which is a (finite) direct sum of modules in N. Consider

the pullback square

M ′′ N ∩ Tr (N,M)

M ′ Tr (N,M)

.

As N is a hereditary class, then M ′′ is generated by N. Hence N ∩ Tr (N,M) is

generated by N as well. Since Tr (N, N) is the largest submodule of N generated by

N, we must have N ∩ Tr (N,M) ⊆ Tr (N, N).

Remark 1.3.15. There is a result dual to Lemma 1.3.14 for cohereditary classes of

modules in modB.

Let τ and υ be preradicals in C. We write τ ≤ υ if τ is a subfunctor of υ. Consider

the functor τ ◦ υ – this is still a preradical. Note that τ ◦ υ ≤ υ and τ ◦ υ ≤ τ . For

M in C define τ • υ (M) as the submodule of M containing υ (M), satisfying

τ (M/υ (M)) = τ • υ (M) /υ (M) .
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We check that τ • υ is a predadical in C.

Lemma 1.3.16. Let τ and υ be preradicals. Then τ • υ is a preradical.

Proof. Let f : M −→ N be a map in C and consider m ∈ τ • υ (M). The element

f(m) + υ (N) ∈ N/υ (N) is the image of m + υ (M) through the map τ ◦ (1/υ) (f).

Hence f(m) + υ (N) lies in τ • υ (N) /υ (N), so f(m) belongs to τ • υ (N).

By construction, υ ≤ τ • υ, and it is easy to check that τ ≤ τ • υ. Moreover, τ is

a radical if and only if τ • τ = τ .

By the characterisation of hereditary radicals given in Lemma 1.3.9, it follows

that τ ◦ υ is hereditary in C if τ and υ are both hereditary in C. Similarly, if τ and υ

are both cohereditary then τ ◦υ is cohereditary. We also have that τ •υ is hereditary

(resp. cohereditary), whenever τ and υ are both hereditary (resp. both cohereditary)

– this is because the functor 1/ (τ • υ) is naturally isomorphic to (1/τ) ◦ (1/υ).

Similarly to the composition of preradicals, the operation • is associative.

Lemma 1.3.17. The operation • is associative.

Proof. Let τ , υ and µ be preradicals and let M be in C. Consider the canonical

isomorphism

(M/µ (M)) / (υ • µ (M) /µ (M)) −→M/υ • µ (M) .

The preradical τ maps this morphism to the restriction isomorphism between

τ ((M/µ (M)) / (υ • µ (M) /µ (M))) = τ ((M/µ (M)) /υ (M/µ (M)))

= τ • υ (M/µ (M)) /υ (M/µ (M))

= ((τ • υ) • µ (M) /µ (M))

/ (υ • µ (M) /µ (M)) .

and

τ (M/υ • µ (M)) = τ • (υ • µ) (M) /υ • µ (M) .

This implies that the operation • is associative.

In general we have

τ • (υ ◦ µ) 6= (τ • υ) ◦ µ, τ ◦ (υ • µ) 6= (τ ◦ υ) • µ.
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1.3.3 Filtrations arising from preradicals

Given a preradical τ in C, let τ 0 be the identity functor in C and let τ0 be the zero

preradical. For m ∈ Z>0, define τm := τ ◦ τm−1 and τm := τ • τm−1. The next lemma

summarises the properties of these preradicals.

Lemma 1.3.18. Let τ be a preradical in C.

1. For every m ≥ 1, τm ≤ τm−1 and τm−1 ≤ τm.

2. Given m,m′ ≥ 0, then τm ◦ τm′ = τm+m′.

3. Given m,m′ ≥ 0, then τm • τm′ = τm+m′.

4. For every M in modB there is m ≥ 0 such that τm (M) = τm+1 (M).

5. For every M in modB there is m ≥ 0 such that τm (M) = τm+1 (M).

6. If τ is a radical then τm = τ , for every m ≥ 1.

7. If τ is idempotent then τm = τ , for every m ≥ 1.

The preradicals τm and τm, m ∈ Z≥0, give rise to special filtrations of modules in

C.

Lemma 1.3.19. Let τ be a preradical in C. Suppose that τ (M) 6= 0 for every nonzero

module M in C. Given M in modB, there is a unique integer l(τ,•) (M) = n ≥ 0

such that τn (M) = M , and τm−1 (M) ⊂ τm (M) for every m satisfying 1 ≤ m ≤ n.

Moreover, for m ≤ l(τ,•) (M), we have

l(τ,•) (M/τm (M)) = n−m.

Proof. It is clear that there is an integer n satisfying τn (M) = M and τm−1 (M) ⊂
τm (M) for every m, 1 ≤ m ≤ n. Notice that

τn−m (M/τm (M)) = (τn−m • τm (M)) /τm (M) = M/τm (M) ,

for 1 ≤ m ≤ n. If n−m ≥ 1, we have

τn−m−1 (M/τm (M)) = τn−1 (M) /τm (M) ⊂M/τm (M) ,

which concludes the proof of the lemma.
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Remark 1.3.20. There is a similar result for preradicals τ in C satisfying τ (M) 6= M

for every nonzero M : given M in modB, there is a unique integer l(τ,◦) (M) = n ≥ 0

such that τn (M) = 0, and τm (M) ⊂ τm−1 (M) for every m satisfying 1 ≤ m ≤ n;

further, if m ≤ l(τ,◦) (M), we have l(τ,◦) (τm (M)) = n−m.

Lemma 1.3.21. Let τ be a hereditary preradical in C. Then τm is also a hereditary

preradical, and τm ◦ τm′ = τmin{m,m′} for every m,m′ ≥ 0. Furthermore, if τ (M) 6= 0

for every M 6= 0, the following holds for N and M in modB:

1. if N ⊆M then l(τ,•) (N) ≤ l(τ,•) (M);

2. if N ⊆ τm (M), then l(τ,•) (N) ≤ m;

3. if m ≤ l(τ,•) (M), then τm (M) is the largest submodule N of M such that

l(τ,•) (N) = m.

Proof. Let τ be a hereditary preradical. We have seen that applying the binary

operation • to hereditary preradicals yields a hereditary preradical, so τm is hereditary

whenever τ is. Let now M be in modB. As τm is hereditary, we have that

τm (τm′ (M)) = τm′ (M) ∩ τm (M) = τmin{m,m′} (M) .

Suppose further that τ (M) 6= 0 for every M 6= 0. For part 1, let l(τ,•) (M) = n.

Then

τn (N) = N ∩ τn (M) = N ∩M = N.

For part 2, note that

τm (N) = N ∩ τm (τm (M)) = N ∩ τm (M) = N.

Part 3 is now straightforward.

As expected, there is a symmetric result for cohereditary preradicals τ satisfying

τ (M) 6= M for every M 6= 0.

1.4 Quasihereditary algebras

In this section we gather some results on quasihereditary algebras and on the Ringel

duality. We discuss two (equivalent) definitions of quasihereditary algebra which are

particularly well suited for our purposes. Both notions follow the module theoretical

perspective of [21], and use partial orders instead of linear orders, contrary to the most

quoted definitions of quasihereditary algebra. The main references for this section are

[20], [18], [21], [25, Appendix] and [6]. The letter B shall denote an Artin algebra.
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1.4.1 Standard and costandard modules

Given an Artin algebra B, we may label the isomorphism classes of simple B-modules

by the elements of a finite set Φ. Denote the simple B-modules by Li, i ∈ Φ, and use

the notation Pi (resp. Qi) for the projective cover (resp. the injective hull) of Li.

For a subset Φ′ of Φ define

PΦ′ := {Pi : i ∈ Φ′},

QΦ′ := {Qi : i ∈ Φ′}.

Remark 1.4.1. Let M be in modB. The module Tr (PΦ′ ,M) is the largest submodule

ofM which is generated by projectives in PΦ′ . Recall that Tr (PΦ′ ,−) is a cohereditary

preradical in modB (see Example 1.3.11), hence it is a radical (according to Remark

1.3.10). Therefore, by Remark 1.3.6, we have

Tr (PΦ′ ,−) = Rej
(
−,FTr(PΦ′ ,−)

)
,

where

FTr(PΦ′ ,−) = {N ∈ modB : Tr (PΦ′ , N) = 0}

= {N ∈ modB : all composition factors of N are of type Li, i 6∈ Φ′}.

Thus, there is an alternative description of Tr (PΦ′ ,−). For M in modB, Tr (PΦ′ ,M)

is the submodule N of M such that M/N is the largest quotient of M all of whose

composition factors are of the form Li, i 6∈ Φ′.

Similarly, Rej (M,QΦ′) may also be described in two different ways. It is the

submodule N of M such that M/N is the largest quotient of M cogenerated by

injectives in QΦ′ . The module Rej (M,QΦ′) is also the largest submodule of M all of

whose composition factors are of the form Li, i 6∈ Φ′.

Suppose from now onwards that the labelling set Φ is endowed with a partial

order v. Given i ∈ Φ, let ∆ (i) be the largest quotient of Pi all of whose composition

factors are of the form Lj, with j v i, that is, define

∆ (i) = ∆(Φ,v) (i) := Pi/Tr
(
PΦ6vi , Pi

)
= Pi/Tr

(⊕
j: j 6vi

Pj, Pi

)
, (1.2)

where

Φ 6vi := {j ∈ Φ : j 6v i}.
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The modules ∆ (i) are called standard modules and we set

∆ := {∆ (i) : i ∈ Φ}.

Dually, let ∇ (i), i ∈ Φ, be the largest submodule of Qi all of whose composition

factors are of the form Lj, with j v i, i.e.,

∇ (i) = ∇(Φ,v) (i) := Rej
(
Qi,QΦ6vi

)
= Rej

(
Qi,

⊕
j: j 6vi

Qj

)
. (1.3)

We set

∇ := {∇ (i) : i ∈ Φ}

and call the elements in ∇ the costandard modules .

The sets ∆ and ∇ depend, in an essential way, on the indexing poset (Φ,v).

In general, the standard and costandard modules change when we refine the poset

(Φ,v). In order to prevent this from happening we consider adapted orders in the

sense of the definition below.

Definition 1.4.2 ([21]). An indexing poset (Φ,v) for B is called adapted provided

that the following condition holds: for every M in modB with TopM ∼= Li and

SocM ∼= Lj, where i and j are incomparable elements in Φ, there is k ∈ Φ with k = i

or k = j, such that Lk is a composition factor of M .

Remark 1.4.3. Note that an indexing set Φ for B which is endowed with a linear order

is always adapted.

Lemma 1.4.4 ([21]). Let (Φ,v) be an adapted order for the set of simple B-modules

and suppose that (Φ,v′) is a refinement of (Φ,v). Then ∆(Φ,v) (i) = ∆(Φ,v′) (i) and

∇(Φ,v) (i) = ∇(Φ,v′) (i) for every i ∈ Φ, and the poset (Φ,v′) is still adapted.

The standard and the costandard modules have very useful homological properties.

Lemma 1.4.5 ([21]). Let (Φ,v) be an adapted order for the Artin algebra B. Take

i, j ∈ Φ. The following holds:

1. if Ext1
B (∆ (i) ,∆ (j)) 6= 0, then i < j;

2. if Ext1
B (∇ (i) ,∇ (j)) 6= 0, then i = j;

3. Ext1
B (∆ (i) ,∇ (j)) = 0.
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Suppose |Φ| = n and let (Φ,v′) be a total extension of (Φ,v), i.e. suppose that

(Φ,v′) is a refinement of the poset (Φ,v) to a linear order. Given such a refinement,

the elements in Φ may be relabeled as k1, . . . , kn, where

k1 <
′ · · · <′ ki <′ · · · <′ kn.

Let M be in modB. We define its trace filtration with respect to the linear order

(Φ,v′) by

0 = M
(Φ,v′)
(n) ⊆ · · · ⊆M

(Φ,v′)
(i) ⊆ · · · ⊆M

(Φ,⊆′)
(0) = M,

with M
(Φ,v′)
(i) = Tr

(
{Pkj : j > i},M

)
= Tr(PΦ6v′ki

,M).

In a similar way, the reject filtration of M associated to the total extension (Φ,v′)
of (Φ,v) is defined by

0 = M
(Φ,v′)
[0] ⊆ · · · ⊆M

(Φ,v′)
[i] ⊆ · · · ⊆M

(Φ,v′)
[n] = M,

with M
(Φ,v′)
[i] = Rej

(
M, {Qkj : j > i}

)
= Rej(M,QΦ6v′ki

).

We shall now turn our attention to the modules which have a trace filtration whose

factors lie in add ∆ and to the modules possessing a reject filtration whose factors

belong to add∇.

Given a class of modules Θ, let F (Θ) be the full subcategory of modB consisting

of all modules that have a Θ-filtration, that is, a filtration whose factors lie in Θ (up

to isomorphism). The categories F (∆) and F (∇) are of central importance. We call

the elements of F (∆) (resp. of F (∇)) ∆-good modules (resp. ∇-good modules). The

next proposition relates trace filtrations (resp. reject filtrations) with the category

F (∆) (resp. F (∇)).

Proposition 1.4.6 ([25, Appendix]). Let M be in modB and suppose that (Φ,v) is

an adapted poset for B.

1. The module M belongs to F (∆) if and only if, for any total extension (Φ,v′)
of (Φ,v), the factor M

(Φ,v′)
(i−1) /M

(Φ,v′)
(i) in the trace filtration of M associated to

(Φ,v′) is a direct sum of copies of ∆ (ki), i = 1, . . . , n.

2. The module M belongs to F (∆) if and only if, for any total extension (Φ,v′)
of (Φ,v), the factor M

(Φ,v′)
[i] /M

(Φ,v′)
[i−1] in the reject filtration of M associated to

(Φ,v′) is a direct sum of copies of ∇ (ki), i = 1, . . . , n.

Remark 1.4.7. It follows from the proof of this result that ∆- and ∇-filtrations are

essentially unique (à la Jordan–Hölder). For M in F (∆) and i ∈ Φ, denote the

multiplicity of the standard module ∆ (i) in a ∆-filtration of M by (M : ∆ (i)). The

number (M : ∇ (i)) is defined analogously for M in F (∇).
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It is immediate that the classes F (∆) and F (∇) are closed under extensions.

Moreover, part 3 of Lemma 1.4.5 implies (by induction) that

Ext1
B (F (∆) ,F (∇)) = 0.

The next result summarises the main properties of the classes F (∆) and F (∇).

Lemma 1.4.8 ([21], [46, Theorem 3.2]). Suppose that (Φ,v) is an adapted order for

B. Then:

1. both F (∆) and F (∇) are closed under extensions;

2. Ext1
B (F (∆) ,F (∇)) = 0;

3. any short exact sequence whose terms are in F (∆) (resp. F (∇)) and whose

middle term is a direct sum of standard modules (resp. direct sum of costandard

modules) splits;

4. if M1 ⊕M2 is in F (∆) (resp. in F (∇)) then both M1 and M2 belong to F (∆)

(resp. F (∇));

5. the class F (∆) is closed under kernels of epics;

6. the class F (∇) is closed under cokernels of monics.

1.4.2 Definition of a quasihereditary algebra

Definition 1.4.9. Let B be an Artin algebra with an indexing poset (Φ,v). We say

that B is quasihereditary with respect to (Φ,v) (and write (B,Φ,v)) if the following

conditions hold:

1. (Φ,v) is adapted to B;

2. for every i ∈ Φ, [∆ (i) : Li] = 1;

3. for every i ∈ Φ, Pi is in F (∆).

Remark 1.4.10. Note that condition 2 above is equivalent to the conditions:

2’. for every i ∈ Φ, EndB (∆ (i)) is a division ring;

2”. for every i ∈ Φ, [∇ (i) : Li] = 1;

2”’. for every i ∈ Φ, EndB (∇ (i)) is a division ring.
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Moreover, condition 3 in the previous definition may be replaced by the condition:

3’. for every i ∈ Φ, Qi ∈ F (∇),

provided that conditions 1 and 2 hold.

As mentioned before, the numbers (M : ∆ (i)) and (N : ∇ (i)) are independent

of a choice of a ∆-filtration and of a ∇-filtration for M ∈ F (∆) and N ∈ F (∇), re-

spectively. Quasihereditary algebras satisfy a Brauer–Humphreys type of reciprocity,

which reduces to the identities (Pi : ∆ (j)) = [∇ (j) : Li] and (Qi : ∇ (j)) = [∆ (j) :

Li] when the field K is algebraically closed ([21, Lemma 2.5]). More generally, we

have the following well-known result.

Lemma 1.4.11. Let (B,Φ,v) be a quasihereditary algebra. Let M and N be B-

modules, with M ∈ F (∆) and N ∈ F (∇). Then, for i ∈ Φ,

(M : ∆ (i)) = dimEndB(∇(i)) HomB (M,∇ (i)),

(N : ∇ (i)) = dimEndB(∆(i))op HomB (∆ (i) , N).

Proof. Because EndB (∆ (i)) op is a division ring, it is possible to compute the di-

mension of HomB (∆ (i) , N) over EndB (∆ (i)) op. Note that HomB (∆ (i) ,∇ (j)) is

nonzero if and only if j = i. Moreover, since Ext1
B (F (∆) ,F (∇)) = 0 (see Lemma

1.4.8), the functor HomB (∆ (i) ,−) preserves exactness when applied to short exact

sequences with modules in F (∇). So, by induction on the number of costandard

modules appearing on a ∇-filtration of N , one concludes that (N : ∇ (i)) is given by

dimEndB(∆(i))op HomB (∆ (i) , N)/dimEndB(∆(i))op HomB (∆ (i) ,∇ (i)).

We now claim that EndB (∆ (i)) and HomB (∆ (i) ,∇ (i)) are isomorphic as modules

over EndB (∆ (i)) op. In order to see this, apply the functor HomB (∆ (i) ,−) to the

exact sequences

0 Rad ∆ (i) ∆ (i) Li 0

0 Li ∇ (i) ∇ (i) / Soc∇ (i) 0 .

On the one hand, we deduce that the modules EndB (∆(i)) and HomB (∆(i), Li) are

isomorphic (note that Ext1
B (∆(i),Rad ∆(i)) = 0 since Ext1

B (∆(i), Lj) = 0 for every

j v i). On the other hand, it follows that HomB (∆(i), Li) ∼= HomB (∆(i),∇(i)).

Thus the modules EndB (∆ (i)) and HomB (∆ (i) ,∇ (i)) are isomorphic over the di-

vision algebra EndB (∆ (i)) op. So dimEndB(∆(i))op HomB (∆ (i) ,∇ (i)) = 1, and we get

the desired identity. The proof of the identity involving M is similar.
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It is easy to conclude that the property of being quasihereditary is closed under

Morita equivalence. Moreover, every quasihereditary algebra has finite global dimen-

sion ([55]). Finally, note that if B is a quasihereditary algebra with respect to the

poset (Φ,v) then Bop is quasihereditary with respect to the same poset.

Proposition 1.4.12 gives an alternative characterisation of a quasihereditary alge-

bra.

Proposition 1.4.12. Let B an Artin algebra, and suppose that (Φ,v) is an indexing

poset for the simple B-modules. Then B is quasihereditary with respect to (Φ,v) if

and only if the following conditions hold for every i ∈ Φ:

1. [∆ (i) : Li] = 1;

2. Pi ∈ F (∆);

3. (Pi : ∆ (i)) = 1 and (Pi : ∆ (j)) 6= 0 implies that j w i.

Proof. We provide a sketch of the proof. Suppose (B,Φ,v) satisfies conditions 1 to 3

in the statement of the proposition. In order to prove that (B,Φ,v) is quasihereditary

we need to show that the poset (Φ,v) is adapted to B. So let M be in modB and

suppose that TopM ∼= Li and SocM ∼= Lj, with i and j incomparable in (Φ,v).

The module M is isomorphic to a quotient of Pi. In particular, SocM ∼= Lj is a

composition factor of Pi, but not a composition factor of ∆ (i). Recall that ∆ (i) =

Pi/Tr
(
PΦ6vi , Pi

)
. By the previous observations, the socle of M is a composition factor

of Tr
(
PΦ6vi , Pi

)
. Hence, there must be some simple module in the top of Tr

(
PΦ6vi , Pi

)
which appears as a composition factor of M . By condition 3, the module Tr

(
PΦ6vi , Pi

)
must be generated by projectives Pk, with k = i. As a consequence, [M : Lk] 6= 0 for

some k = i.

Conversely, suppose that B is quasihereditary with respect to the poset (Φ,v).

We need to show that B satisfies property 3 in the statement of the proposition. So

let i be in Φ and consider the module Pi. We have that ∆ (i) = Pi/Tr
(
PΦ6vi , Pi

)
.

Because (Φ,v) is adapted to B then Tr
(
PΦ6vi , Pi

)
can be alternatively described as

the largest submodule of Pi generated by projectives Pj, with j = i. One can see

this directly by the definition of trace (see Remark 1.4.1) and of adapted poset, or

by using Proposition 1.4.6. If i is a maximal element in Φ then Tr
(
PΦ6vi , Pi

)
= 0

and Pi satisfies property 3. For an arbitrary element i in Φ, the module Tr
(
PΦ6vi , Pi

)
is generated by projectives Pj, with j = i. So the statement follows by descending

induction on the poset (Φ,v) (using part 5 of Lemma 1.4.8).
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Let (Φ,v) be a poset. A subset Φ′ of Φ is said to be an ideal of (Φ,v) if i v j,

j ∈ Φ′, implies that i lies in Φ′. Ideals give rise to new quasihereditary algebras.

Proposition 1.4.13 ([20], [29]). Let (B,Φ,v) be a quasihereditary algebra and let

Φ′ be an ideal of (Φ,v). Then:

1. the algebra B/Tr (PΦ−Φ′ , B) is a quasihereditary algebra with respect to the poset

(Φ′,v);

2. the algebra EndB
(⊕

i∈Φ−Φ′ Pi
)
op is quasihereditary with respect to the poset

(Φ− Φ′,v).

1.4.3 The tilting modules and the Ringel dual

Let B be a quasihereditary algebra with respect to (Φ,v), and let i be in Φ. It was

proved by Ringel in [50] (see also Donkin, [22]) that there is a unique indecomposable

B-module T (i) (up to isomorphism) which has both a ∆- and a ∇-filtration, with

one composition factor labelled by i, and all the other composition factors labelled

by j, j < i.

It is now standard to refer to a module in F (∆)∩F (∇) as a tilting module. Let T

be the direct sum of the modules T (i), i ∈ Φ. This module is called the characteristic

module in [50], and it is such that addT = F (∆) ∩ F (∇). The modules T (i) have

remarkable properties.

Theorem 1.4.14 ([50]). Let (B,Φ,v) be a quasihereditary algebra. For every i ∈ Φ

there is a short exact sequence

0 ∆ (i) T (i) X (i) 0
φ

, (1.4)

with φ a left minimal F (∇)-approximation and with X (i) a module lying in

F ({∆ (j) : j < i}) .

Dually, there is an exact sequence

0 Y (i) T (i) ∇ (i) 0
ψ

, (1.5)

with ψ a right minimal F (∆)-approximation and with Y (i) a module lying in

F ({∇ (j) : j < i}) .
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For i, j ∈ Φ, i 6= j, the indecomposable modules T (i) and T (j) are nonisomorphic,

so the endomorphism algebra of T is a basic algebra. Indeed,

EndB (T ) op

is quasihereditary with respect to the order opposite to the quasihereditary order of B

([50]). This endomorphism algebra, investigated by Ringel in [50], is called the Ringel

dual of B, and we shall denote it by R (B). It was shown in [50] that R (R (B)) ∼= B

for B basic.

Denote by P ′i the projective indecomposable R (B)-module HomB (T, T (i)) and

let L′i be its top. Let Q′i represent the injective R (B)-module with socle L′i. Denote

the standard, the costandard and the summands of the characteristic R (B)-module

T ′ accordingly, by ∆′ (i), ∇′ (i) and T ′ (i), respectively.

Theorem 1.4.15 ([50]). Let (B,Φ,v) be a quasihereditary algebra. Then R (B) is

quasihereditary with respect to (Φ,v op). Moreover, the restriction of the functor

HomB (T,−) : modB −→ modR (B)

to F (∇) yields an equivalence between the categories F (∇) and F (∆′). Similarly,

the functor

D ◦ HomB (−, T ) : modB −→ modR (B) ,

where D is the standard duality, induces an equivalence between the categories F (∆)

and F (∇′).

Remark 1.4.16. Since both Ext1
B (T,F (∇)) and Ext1

B (F (∆) , T ) vanish (see part 2

of Lemma 1.4.8), one easily sees that: HomB (T,−) maps short exact sequences in

modB with modules in F (∇) to short exact sequences in modR (B) with modules

in F (∆′); D ◦ HomB (−, T ) maps short exact sequences in modB with modules in

F (∆) to short exact sequences in modR (B) with modules in F (∇′).
Moreover, the following holds (see the proof of Theorem 6 and Lemma 7 in [50])

HomB (T, T (i)) = P ′i , D (HomB (T (i) , T )) = Q′i,
HomB (T,∇ (i)) = ∆′ (i) , D (HomB (∆ (i) , T )) = ∇′ (i) ,
HomB (T,Qi) = T ′ (i) , D (HomB (Pi, T )) = T ′ (i) .

(1.6)
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Chapter 2

Ultra strongly quasihereditary
algebras and the ADR algebra

2.1 Overview of the chapter

A prototype for quasihereditary algebras are the Schur algebras, whose highest weight

theory is that of general linear groups. They are the endomorphism algebras of

certain modules over the group algebra of a symmetric group, and the algebra of the

symmetric group can be seen as an idempotent subalgebra of the Schur algebra.

Thus it seems natural that one can study an Artin algebra A by realising it as

(ξRξ, ξ) with R quasihereditary and ξ an idempotent in R. In [5], Auslander gave

an explicit construction of an algebra R̃A and an idempotent ξ ∈ R̃A for every Artin

algebra A, such that R̃A has finite global dimension, and A is isomorphic to (ξR̃Aξ, ξ).

In [18], Dlab and Ringel showed that this algebra R̃A is in fact quasihereditary. This

may be rephrased by saying that any such A has an associated highest weight theory.

In this chapter, we study the basic algebra RA of R̃A, where A is an Artin algebra.

We propose to call RA the Auslander–Dlab–Ringel algebra (ADR algebra) of A. We

show that RA satisfies the following two properties:

(A1) Rad ∆ (i) lies in F (∆);

(A2) if Rad ∆ (i) = 0 then the corresponding indecomposable injective module Qi

has a filtration by standard modules (in other words, Qi is tilting).

This motivates the following central definition in this dissertation. Let B be a quasi-

hereditary algebra with respect to a poset (Φ,v). We say that B is right ultra strongly

quasihereditary (RUSQ, for short) if it satisfies (A1) and (A2). This class of algebras

is closed under Morita equivalence of quasihereditary algebras, since axioms (A1) and

(A2) are expressed in terms of highest weight structures and of internal categorical
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constructions. By a result of Dlab and Ringel ([19]), condition (A1) holds if and

only if the category of modules with a ∆-filtration is closed under submodules, and

the algebras with this property were named “right strongly quasihereditary algebras”

([51]).

We prove several results for RUSQ algebras, and for their Ringel duals. In par-

ticular, we show that the standard modules are uniserial, and that one can label the

simple modules in a natural way by pairs (i, j) so that ∆ (i, j) has radical ∆ (i, j + 1)

for 1 ≤ j < li and ∆ (i, li) is simple. As a main contribution of Section 2.5, we will

prove the following (which corresponds to Theorem 2.5.8 and Proposition 2.5.11).

Theorem. Let B be a RUSQ algebra. The injective hull Qi,li of the simple B-module

with label (i, li) has both a ∆- and a ∇-filtration. Moreover, the chain of inclusions

0 ⊂ T (i, li) ⊂ · · · ⊂ T (i, j) ⊂ · · · ⊂ T (i, 1) = Qi,li ,

where T (i, j) is the tilting module corresponding to the label (i, j), is the unique ∇-

filtration of Qi,li. For 1 ≤ j < li, the injective hull Qi,j of the simple module with

label (i, j) is isomorphic to Qi,li/T (i, j + 1).

Most of the content of this chapter was published in [16], the main addition being

the reformulation of the definition of RUSQ algebra. This chapter is organised as

follows. Section 2.2 contains background on the ADR algebra. In Section 2.3, we

study the standard RA-modules corresponding to the quasihereditary order (Λ,�) of

[18]. We prove that the uniserial projective RA-modules described by Smalø in [57]

are indeed standard modules with respect to (Λ,�). In Section 2.4, we show that

the algebra RA is quasihereditary with respect to (Λ,�) – our proof is different from

that in [18]. Section 2.5 introduces ultra strongly quasihereditary algebras. We prove

the result on the labelling described previously, we construct the injective modules

for these algebras and we prove Theorem 2.5.8. In Section 2.6 we show that the

Ringel dual R (B) op of B is a RUSQ algebra whenever B is RUSQ. In Section 2.7 we

determine a presentation of RA by quiver and relations when A is a certain Brauer

tree algebra, which occurs for example in the representation theory of the symmetric

group.

2.2 The ADR algebra of A

Fix an Artin algebra A. Given a module M in modA, we shall denote its Loewy length

by LL(M), that is, LL(M) is the minimal natural number such that RadLL(M) M = 0.
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Let A have Loewy length L (as a left module). We want to study the basic version

of the endomorphism algebra of

L⊕
j=1

A/Radj A.

This will have multiplicities in general.

Let {P1, . . . , Pn} be a complete irredundant set of projective indecomposable A-

modules and let li be the Loewy length of Pi. Define

G = GA :=
n⊕
i=1

li⊕
j=1

Pi/Radj Pi. (2.1)

The modules Pi/Radj Pi are indecomposable and pairwise nonisomorphic, and these

are precisely the indecomposable summands of
⊕L

j=1A/Radj A (up to isomorphism).

The algebra

R = RA := EndA (G) op,

which we call the Auslander–Dlab–Ringel algebra of A (ADR algebra of A), is then a

basic algebra of

R̃A := EndA(
L⊕
j=1

A/Radj A)op.

The projective indecomposable R-modules are given by

Pi,j := HomA

(
G,Pi/Radj Pi

)
,

for 1 ≤ i ≤ n, 1 ≤ j ≤ li. Let ξ ∈ R be the idempotent corresponding to the

summand
⊕n

i=1 Pi,li of R. Notice that ξRξ is a basic algebra of A.

Denote the simple quotient of Pi,j by Li,j and define

Λ := {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ li}, (2.2)

so that Λ labels the simple R-modules.

Recall the properties of the Hom functors described in Subsection 1.2.3. Since G

generates A, the functor HomA (G,−) has rather nice properties. In this case, the

functor

HomA (G,−) : modA −→ modR

is fully faithful and it is right adjoint to the exact functor HomR (HomA (G,A) ,−).

This implies that HomA (G,−) preserves injectives (see for instance [61, Proposition

2.3.10]). A detailed account of the properties of this adjunction can be found in [5,

§8–§10]. According to Proposition 1.2.4, the restriction of HomA (G,−) to addG

yields an equivalence between the categories addG and projR.
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2.3 The standard modules

Following the notation introduced in Section 2.2, recall that the set

Λ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ li}

labels the simple modules over the ADR algebra R. Define a partial order, �, on Λ

by

(i, j) � (k, l)⇔ j > l. (2.3)

It is useful to call to mind the concepts and notation introduced in Subsections 1.4.1

and 1.4.2, namely the definition of a standard module and of a quasihereditary algebra

(see (1.2) and Definition 1.4.9).

We shall see, in Section 2.4, that the ADR algebra R is quasihereditary with

respect to the poset (Λ,�). In this section, we describe the standard R-modules

∆ (i, j) with respect to (Λ,�). For this, two ingredients are needed.

The next result, due to Smalø, is crucial. Recall that a module M is said to be

uniserial if it has a unique composition series.

Proposition 2.3.1 ([57, Proposition 2.1]). The modules P1,1, . . . , Pn,1 form a com-

plete irredundant list of projective R-modules without proper projective submodules.

Each projective Pi,1 is uniserial with Loewy length li and, for every (i, j) in Λ, we

have the following short exact sequences

0 HomA

(
G,RadPi/Radj Pi

)
Pi,j Radj−1 Pi,1 0 .

Corollary 2.3.2. For 1 ≤ j ≤ li, the module Radj−1 Pi,1 is uniserial and has com-

position factors Li,j, · · · , Li,li, labelled from the top to the socle.

Proof. By Proposition 2.3.1, the projective indecomposable module Pi,1 has Loewy

length li and is uniserial. Thus, the module Radj−1 Pi,1 is also uniserial and has Loewy

length li− j + 1. Note that Radk(Radj−1 Pi,j) = Radk+j−1 Pi,j. By Proposition 2.3.1,

this module has a simple top isomorphic to Li,k+j, for 0 ≤ k ≤ li − j.

The next lemma will also be used to determine the structure of the standard

R-modules. Its proof can be found in [5], within the proof of Proposition 10.2.

Alternatively, see Lemma 3.3.10, which will be proved in Chapter 3 – this is a stronger

version of the next result.
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Lemma 2.3.3. Let M be in modA. There is an epic ε : X0 −→ M , with X0 in

addG satisfying LL(X0) = LL(M), such that HomA (G, ε) is the projective cover of

HomA (G,M) in modR.

We now have all the necessary results to describe the standard modules over

the ADR algebra. For the proof of Proposition 2.3.4, recall the definition of trace

given in Example 1.3.2. If B is an algebra endowed with a labelling poset (Φ,v)

(as in Subsection 1.4.1), then the standard module ∆ (i) is defined as the quotient

Pi/Tr(
⊕

j: j 6vi Pj, Pi), and this is the largest factor module of Pi whose composition

factors are all of the form Lj, with j v i.

Proposition 2.3.4. For every (i, j) in Λ

∆ (i, j) ∼= Radj−1 Pi,1,

and there are short exact sequences

0 HomA

(
G,RadPi/Radj Pi

)
Pi,j ∆ (i, j) 0 . (2.4)

The standard R-modules are uniserial. The standard module ∆ (i, j) has Loewy length

li − j + 1, and it has composition factors Li,j, . . . , Li,li (ordered from the top to the

socle).

Proof. By Proposition 2.3.1, the module Radj−1 Pi,1 is uniserial and it is a quotient of

Pi,j. According to Corollary 2.3.2, Radj−1 Pi,1 has composition factors Li,j, . . . , Li,li
(ordered from the top to the socle). By the definition of standard module and of the

poset (Λ,E), there must be an epic f from ∆ (i, j) to Radj−1 Pi,1. Therefore we have

the following commutative diagram

0 Tr
(⊕

(k,l): (k,l) 6�(i,j) Pk,l, Pi,j

)
Pi,j ∆ (i, j) 0

0 HomA

(
G,RadPi/Radj Pi

)
Pi,j Radj−1 Pi,1 0

∃ g f .

Furthermore, since LL(RadPi/Radj Pi) = j − 1, it follows from Lemma 2.3.3

that HomA

(
G,RadPi/Radj Pi

)
is generated by projectives Pk,l, such that l < j

(so (k, l) 5 (i, j)). By the definition of trace, the inclusion map is an injection of

HomA

(
G,RadPi/Radj Pi

)
into Tr(

⊕
(k,l): (k,l) 6�(i,j) Pk,l, Pi,j). Hence the composition

of g with this inclusion is one-to-one. But then the monic g must be an isomorphism.

Note that Ker f ∼= Coker g, so the epic f must be an isomorphism as well.
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Observe that

Rad ∆ (i, j) = Rad
(
Radj−1 Pi,1

)
=

{
∆ (i, j + 1) if j < li,

0 if j = li.
(2.5)

Therefore Rad ∆ (i, j), which is the unique maximal submodule of ∆ (i, j), belongs to

F (∆) for all (i, j) in Λ.

The next lemma can be found in [19, Lemma 2]. We state it for the convenience

of the reader.

Lemma 2.3.5. Let Θ be a set of modules. Assume that for any M in Θ, every

maximal submodule of M has a Θ-filtration. Then the category F (Θ) is closed under

submodules.

By Lemma 2.3.5 and by the identity (2.5), the subcategory F (∆) of modR is

closed under submodules. This suggests that there are many R-modules having a

∆-filtration. In fact, the category F (∆) is at least as large as modA.

Lemma 2.3.6. The subcategory F (∆) of modR is closed under submodules. More-

over, for M in modA, the R-module HomA (G,M) belongs to F (∆).

Proof. We prove that HomA (G,M) belongs to F (∆). By Proposition 2.3.4, the result

holds if LL(M) = 1, as HomA (G,Li) = Pi,1 = ∆(i, 1). Assume that the claim holds

for modules with Loewy length l − 1 and let M have Loewy length l. The functor

HomA (G,−) maps the short exact sequence

0 RadM M M/RadM 0

to

0 HomA (G,RadM) HomA (G,M) HomA (G,M/RadM)

HomA (G,M) /HomA (G,RadM)

.

By induction, HomA (G,RadM) lies in F (∆), and by the initial case, the module

HomA (G,M/RadM) belongs to F (∆) as well. Since F (∆) is closed under submod-

ules, then

HomA (G,M) /HomA (G,RadM) ∈ F (∆) .

The result follows from the fact that F (∆) is closed under extensions (Lemma 1.4.8).
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2.4 The ADR algebra is quasihereditary

The ADR algebra is quasihereditary with respect to the heredity chain constructed

by Dlab and Ringel in [18]. The underlying order in [18] can be shown to be the same

as our partial order (Λ,�). Instead of going into details about heredity chains, we

give a different proof that R is quasihereditary with respect to (Λ,�). For this, recall

the definition of an adapted order – Definition 1.4.2.

Lemma 2.4.1. The partial order (Λ,�) for the simple R-modules is an adapted order

for R.

Proof. Let N be an indecomposable R-module. Suppose that TopN = Li,j and

SocN = Lk,l, with (i, j) and (k, l) incomparable with respect to �. Then j = l and

i 6= k, by (2.3). There is a nonzero morphism f and a commutative diagram

Pk,l

Pi,l N

∃ t∗
f .

Note that t∗ = HomA (G, t) for some morphism t : Pk/Radl Pk −→ Pi/Radl Pi (recall

that HomA (G,−) is a full functor, or use Proposition 1.2.4). The map t must be a

nonisomorphism since k 6= i. So Im t is generated by a module in

C = add

 ⊕
(x,y): y≤l−1

Px/Rady Px

 .

By the projectivity of Pk/Radl Pk in mod(A/RadlA), we conclude that t factors

through a module in C. Hence t∗ factors through a module in

add

 ⊕
(x,y): y≤l−1

Px,y

 .

But then N must have a composition factor of the form Lx,y for some x and some

y < l, i.e. for some pair (x, y) such that (x, y) � (k, l).

We are now able to prove that the ADR algebra R is quasihereditary with respect

to the poset (Λ,�).

Theorem 2.4.2. The algebra R is quasihereditary with respect to (Λ,�).
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Proof. We check that (R,Λ,�) satisfies conditions 1 to 3 in Definition 1.4.9. By

Lemma 2.4.1, the poset (Λ,�) is adapted to R. Proposition 2.3.4 implies that

[∆ (i, j) : Li,j] = 1. Finally, recall that Pi,j = HomA

(
G,Pi/Radj Pi

)
. By Lemma

2.3.6, the projective indecomposable R-modules lie in F (∆).

The next theorem, due to Dlab and Ringel ([19], [21, Lemma 4.1*]), is stated for

ease of reference. Theorem 2.4.3 is a very useful and informative result.

Theorem 2.4.3. Let (B,Φ,v) be a quasihereditary algebra. The following assertions

are equivalent:

1. Rad ∆ (i) ∈ F (∆) for all i ∈ Φ;

2. F (∆) is closed under submodules;

3. for all i in Φ the module ∇ (i) has injective dimension at most one;

4. every module in F (∇) has injective dimension at most one;

5. every torsionless module (i.e. every module cogenerated by projectives) belongs

to F (∆).

Following Ringel ([51]), a quasihereditary algebra (B,Φ,v) is said to be right

strongly quasihereditary if one of the equivalent statements in Theorem 2.4.3 holds

for B. Dually, B is called left strongly quasihereditary if (Bop,Φ,v) is a right strongly

quasihereditary algebra. The general term strongly quasihereditary algebra will be

used for both left and right strongly quasihereditary algebras.

According to Lemma 2.3.6, the ADR algebra R is right strongly quasihereditary.

Compare this statement with Observation (2) in [51]. In this article, Ringel observes

that every Artin algebra A can be embedded as an idempotent subalgebra in a left

strongly quasihereditary algebra Γ. The algebra Γ in question is obtained by applying

Iyama’s construction to the regular module A (see [51]).

From now onwards denote the simple quotient of the A-module Pi by Li and let Qi

be the injective A-module with socle Li. Similarly, let Qi,j be the injective R-module

with socle Li,j. We claim that the R-modules Qi,li have a ∆-filtration.

Lemma 2.4.4. The functor HomA (G,−) preserves indecomposable modules. In par-

ticular, Qi,li = HomA (G,Qi), and HomA (G,−) preserves injective hulls.
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Proof. The first assertion follows from the fact that HomA (G,−) is a fully faithful

functor. As observed previously, the functor HomA (G,−) also preserves injective

modules. Note that the inclusion of Li in Qi induces a monic from Pi,1 (whose socle

is Li,li by Corollary 2.3.2) to HomA (G,Qi). So indeed Qi,li = HomA (G,Qi).

Let now M be in modA and suppose that SocM =
⊕

j∈J Lxj . Then
⊕

j∈J Pxj ,1

(whose socle is
⊕

j∈J Lxj ,lxj ) is contained in HomA (G,M). Moreover, the functor

HomA (G,−) maps the injective hull of the module M to a monic from HomA (G,M)

to
⊕

j∈J Qxj ,lxj
, so the statement follows.

2.5 Ultra strongly quasihereditary algebras

Let B be a quasihereditary algebra with respect to (Φ,v). Recall the definition of

tilting module given in Subsection 1.4.3. For every i ∈ Φ there is a unique indecom-

posable B-module T (i) (up to isomorphism) which is both ∆- and ∇-good, and has

one composition factor labelled by i, and all the other composition factors labelled

by j, j < i. Denote the charateristic B-module by T (so T is the direct sum of the

modules T (i)), and remember that addT = F (∆) ∩ F (∇).

Lemmas 2.3.6 and 2.4.4 imply that the R-modules Qi,li belong to F (∆)∩F (∇) =

addT . Consequently, every module Qi,li is a tilting module.

In this section we:

(I) introduce the class of ultra strongly quasihereditary algebras, which contains

the ADR algebras;

(II) for B a right ultra strongly quasihereditary algebra, investigate the injective

and the tilting modules – our main results are Proposition 2.5.6, Theorem 2.5.8

and Proposition 2.5.11.

2.5.1 Definition and first properties

Let (B,Φ,v) be an arbitrary quasihereditary algebra, as before. Additionally, sup-

pose that B satisfies the following two conditions:

(A1) Rad ∆ (i) ∈ F (∆) for all i ∈ Φ (i.e. B is right strongly quasihereditary);

(A2) Qi ∈ F (∆) for all i ∈ Φ such that Rad ∆ (i) = 0.

We call these algebras right ultra strongly quasihereditary algebras (RUSQ algebras,

for short). We say that (B,Φ,v) is a left ultra strongly quasihereditary algebra (LUSQ
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algebra) if (Bop,Φ,v) is RUSQ. The designation ultra strongly quasihereditary will

be used generically for RUSQ and LUSQ algebras.

Note that the conditions in Theorem 2.4.3 hold for every RUSQ algebra. Observe

that the algebra RA is RUSQ for every choice of A: RA satisfies the identity (2.5) and

the modules Qi,li are ∆-good. However, notice that there are RUSQ algebras which

are not isomorphic to RA for any A.

Example 2.5.1. Consider the path algebra B = KQ, where Q is the quiver

n◦ n−1◦ · · · 1◦ .

The algebra B is quasihereditary with respect to the natural ordering. Besides, B

satisfies (A1) and (A2). However it is not difficult to see that B is isomorphic to the

quasihereditary algebra RA for some A if and only if n = 1.

Many more examples of ultra strongly quasihereditary algebras will be investigated

in Chapter 5. Notice, for instance, that if (B,Φ,v) is a RUSQ algebra and if Φ′ is

an ideal of (Φ,v), then the quasihereditary algebra (B/Tr (PΦ−Φ′ , B) ,Φ′,v) (as in

Proposition 1.4.13) is still RUSQ. Roughly speaking, this holds because the standard

and the tilting modules over B/Tr (PΦ−Φ′ , B) coincide with those over B which are

labelled by Φ′ (see [29, §1.1]).

We now state the fundamental properties of the standard modules over a RUSQ

algebra.

Lemma 2.5.2. Let (B,Φ,v) be a quasihereditary algebra satisfying axiom (A1).

Then the category F (∆) is closed under submodules, and any nonzero map

f : ∆ (i) −→M,

with M in F (∆), must be monic.

Proof. Axiom (A1) holds for B if and only if the category F (∆) is closed under

submodules. Let B be a quasihereditary algebra satisfying axiom (A1), and consider

a nonzero map f : ∆ (i) −→ M , with M in F (∆). This gives rise to a short exact

sequence

0 Ker f ∆ (i) Im f 0 .

Note that both Ker f and Im f lie in F (∆), as this category is closed under submod-

ules. According to part 3 of Lemma 1.4.8, this short exact sequence splits. Since

f 6= 0, then f must be a monomorphism.
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Let (B,Φ,v) be a quasihereditary algebra. If i ∈ Φ is a maximal element with

respect to v, then ∆ (i) is the only standard B-module which has Li as a composition

factor. The converse of this assertion is not true in general.

Lemma 2.5.3. Let (B,Φ,v) be a RUSQ algebra. Let i1 ∈ Φ be such that ∆ (i1) is

the only standard module having Li1 as a composition factor. Then ∆ (i1) has simple

socle, denote it by Li∗. Moreover, Qi∗ = T (i1).

Proof. Let Li∗ be a summand of the socle of ∆ (i1). By Lemma 2.5.2, F (∆) is closed

under submodules. Hence the module Li∗ is in F (∆), and we must have ∆ (i∗) = Li∗ .

By axiom (A2), the module Qi∗ is in F (∆). There is a nonzero map from ∆ (i1) to

Qi∗ and, by Lemma 2.5.2, this map must be monic. That is, the module Qi∗ has a

submodule M which is isomorphic to ∆ (i1). In particular, Soc ∆ (i1) = Li∗ . As Qi∗

is an indecomposable module in F (∆)∩F (∇), then Qi∗ = T (k) for some k in Φ. We

must have i1 v k as all composition factors of T (k) are of the form Ll, with l v k.

We claim that k = i1. By Theorem 1.4.14, ∆ (k) may be regarded as a submodule

of T (k). Consider the following submodule of T (k):

∆ (k) +M ∼= (∆ (k)⊕M) / (∆ (k) ∩M) .

Suppose, by contradiction, that i1 < k. As a consequence, we have that ∆ (k)∩M ⊆
Rad ∆ (k). Since ∆ (i1) is the only standard module having Li1 as a composition

factor, then ∆ (k) ∩M ⊆ RadM . But then ∆ (k) +M is a submodule of T (k) with

top Lk ⊕ Li1 . As F (∆) is closed under submodules, the module ∆ (k) + M belongs

to F (∆) and the standard modules ∆ (k) and ∆ (i∗) must appear in its ∆-filtration.

Therefore we must have ∆ (k) ∩M = 0, so ∆ (k)⊕M is a submodule of T (k). This

cannot happen as T (k) has simple socle Li∗ (recall that T (k) = Qi∗). Thus i1 = k,

as claimed.

We have proved that if i1 ∈ Φ is such that ∆ (i1) is the only standard module

having Li1 as a composition factor, then ∆ (i1) has simple socle, say Li∗ , and Qi∗ =

T (i1).

The following results show that the axioms (A1) and (A2) encapsulate some of the

key properties of the ADR algebras. In other words, this abstraction is well suited to

the class of ADR algebras.

Lemma 2.5.4. Let (B,Φ,v) be a RUSQ algebra. Let i1 ∈ Φ be such that ∆ (i1) is the

only standard module having Li1 as a composition factor. Then ∆ (i1) is a uniserial

module and every nonzero submodule of ∆ (i1) is a standard module.
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Proof. Suppose that LL(∆ (i1)) = l. We claim that

Soct ∆ (i1) ∈ ∆,

for all 1 ≤ t ≤ l. This will imply the statement of the lemma.

We prove this claim by induction on t – note that the claim holds for t = 1. In fact,

using the notation of Lemma 2.5.3, we have that Soc ∆ (i1) = Li∗ , and Li∗ = ∆ (i∗)

because F (∆) is closed under submodules (see Lemma 2.5.2). Suppose now that

l ≥ 2, let t be such that 1 ≤ t ≤ l − 1, and assume that Soct ∆ (i1) = ∆ (r) for

some r in Φ. We want to prove that Soct+1 ∆ (i1) lies in ∆. Let Ls be a summand

of Soct+1 ∆ (i1) / Soct ∆ (i1), and let N be the image of the map Ps −→ Soct+1 ∆ (i1)

which maps the top of Ps to the summand Ls of Soct+1 ∆ (i1) / Soct ∆ (i1). Notice

that:

(♦) N is in F (∆) as this category is closed under submodules; because N has top

Ls, then ∆ (s) appears in (the top part of) a ∆-filtration of N ; moreover, note

that RadN = ∆ (r).

One of the following situations holds:

(I) r v s;

(II) r = s;

(III) r and s are not comparable.

We now analyse each of these situations.

Situation (III) cannot happen since there is a B-module with Loewy length 2, with

top Ls and socle Lr and, at the same time, (Φ,v) is adapted to B (recall Definition

1.4.2).

By the observation (♦), if condition (II) holds then ∆ (s) = Ls. This is because

the simple top of the module N has to be isomorphic to ∆ (s).

Suppose now that condition (I) holds. By observation (♦), we conclude that

N must be isomorphic to ∆ (s) in this case. If Soct+1 ∆ (i1) has simple top then

Soct+1 ∆ (i1) = N , so Soct+1 ∆ (i1) ∈ ∆ and we are done. Otherwise, the module

Soct+1 ∆ (i1) / Soct ∆ (i1) has some other summand Ls′ , and we may consider the

map

Ps ⊕ Ps′ −→ Soct+1 ∆ (i1)

which sends Ps to N and TopPs′ to the summand Ls′ of Soct+1 ∆ (i1) / Soct ∆ (i1).

Let N ′ be the image of the map above. Note that N ′ belongs to F (∆) as this class is
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closed under submodules. Notice that the modules ∆ (s) and ∆ (s′) certainly appear

in a ∆-filtration of N ′. Since ∆ (s) ∼= N ⊆ N ′, and N ′/N ∼= Ls′ then we must have

∆ (s′) = Ls′ .

We have concluded that, if condition (II) holds, or if condition (I) holds and

Soct+1 ∆ (i∗) 6= N , then there is a summand of Soct+1 ∆ (i1) / Soct ∆ (i1) which is

isomorphic to a standard module. That is, there is a summand Lu on the (t+ 1)th

socle layer of ∆ (i1) satisfying Lu = ∆ (u). By axiom (A2), the module Qu must be

in F (∆). So there is a nonzero morphism

∆ (i∗) ∆ (i∗) / Soct ∆ (i∗) Qu
π ,

and by Lemma 2.5.2 this map must be monic. This cannot happen because π is a

proper epic.

The arguments in the previous paragraph imply that only situation (I) can happen

and that, additionally, we must have Soct+1 ∆ (i1) = N = ∆ (s). This proves that,

for every element i1 in Φ such that ∆ (i1) is the only standard module having Li1 as

a composition factor, we have that the standard module ∆ (i1) is uniserial and all of

its submodules are standard modules.

Proposition 2.5.5. Let (B,Φ,v) be a RUSQ algebra. Let Φ1 be the set of all i1 ∈ Φ

such that ∆ (i1) is the only standard module having Li1 as a composition factor. The

following holds:

1. every standard module is contained in some standard module ∆ (i1), i1 ∈ Φ1;

2. every nonzero submodule of a standard module is still a standard module, and

every standard module is uniserial;

3. if i1 and k1 are two elements in Φ1, and ∆ (i1) and ∆ (k1) have some composition

factor in common, then i1 = k1.

Proof. Let ∆(i(1)) be an arbitrary standard module. We want to prove that ∆(i(1))

is uniserial and that all of its submodules are standard modules. If i(1) is such that

∆(i(1)) is the only standard module having Li(1) as composition factor we are done

(see Lemma 2.5.4). Otherwise, there is a standard module ∆(i(2)), with i(2) 6= i(1),

such that the factor Li(1) appears in its composition series. Note that i(1) < i(2). In

general, there is a sequence of standard modules ∆(i(1)), . . . ,∆(i(k)), . . ., such that

∆(i(k)) has Li(k−1) as a composition factor and i(k) 6= i(k−1). Such sequence must be

finite because the indexes are increasing strictly, that is, i(k−1) < i(k). So there is a
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sequence of standard modules ∆(i(1)), . . . ,∆(i(m)), such that ∆(i(k)) has Li(k−1) as a

composition factor, i(k) 6= i(k−1), for all 1 ≤ k ≤ m, and such that ∆(i(m)) is the only

standard B-module having Li(m) as a composition factor (i.e. i(m) ∈ Φ1). By Lemma

2.5.4, the module ∆(i(m)) is uniserial and all its submodules are standard modules.

Since Lim−1 is a composition factor of ∆(i(m)), then we may embedded the standard

module ∆(i(m−1)) in ∆(i(m)). By applying this reasoning inductively, we conclude

that ∆(i(1)) is a submodule of the uniserial module ∆(i(m)). This proves part 1 and

part 2 in the statement of the proposition (using Lemma 2.5.4).

In order to prove part 3, let i1 and k1 be in Φ1, and suppose that ∆ (i1) and ∆ (k1)

have some composition factor in common, say Lj. By part 2, ∆ (j) can be embedded

in both ∆ (i1) and ∆ (k1), and moreover these two module have the same simple socle,

say Li∗ . Lemma 2.5.3 implies that Qi∗
∼= T (i1) ∼= T (k1). Thus i1 = k1.

Let (B,Φ,v) be a RUSQ algebra. Suppose i1 belongs to the set Φ1 (as in Propo-

sition 2.5.5). The module ∆ (i1) is uniserial. Assume ∆ (i1) has Loewy length li and,

by analogy with the ADR algebra R, let Li1 , . . . , Lili be the composition factors of

∆ (i1), ordered from the top to the socle. We may relabel the simple B-modules as

(i, j), where, for every i1 in Φ1, the label i1 is replaced by (i, 1), and the remaining

labels ij (as before) are replaced by (i, j). By part 1 of Proposition 2.5.5, every simple

B-module has been given such a label. Furthermore, part 3 of Proposition 2.5.5 as-

sures that this relabelling is well defined. Note that this relabelling is consistent with

the labels chosen for the simple modules over the ADR algebra. From now onwards

we will use this new labelling for the simple B-modules. I.e., we shall assume (unless

otherwise stated) that (B,Φ,v) denotes a RUSQ algebra and that

Φ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ li}. (2.6)

So Li,j, Pi,j, Qi,j, ∆ (i, j), ∇ (i, j), T (i, j) and T will be the naturally expected B-

modules. The following proposition summarises our conclusions about RUSQ alge-

bras.

Proposition 2.5.6. Let (B,Φ,v) be a RUSQ algebra. Using the labelling introduced

in (2.6), the following holds:

1. F (∆) is closed under submodules and the standard modules are uniserial;

2. Rad ∆ (i, j) = ∆ (i, j + 1) for j < li, and ∆ (i, li) = Li,li;

3. Qi,li = T (i, 1);
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4. for M ∈ F (∆), the number of standard modules appearing in a ∆-filtration of

M is given by
∑n

i=1[M : Li,li ]

5. a module M belongs to F (∆) if and only if SocM is a (finite) direct sum of

modules of type Li,li;

Proof. Part 1 follows from Lemma 2.5.2 and Proposition 2.5.5. Parts 2 and 3 are just

a reformulation of our the previous conclusions in terms of the relabelling introduced

in (2.6). Note that part 4 is a consequence of part 2.

We now prove part 5. If M is in F (∆) then, by part 1, SocM lies in F (∆) and

part 2 implies that SocM is a direct sum of modules of type Li,li . Conversely, if the

socle of a module M is a direct sum of simples Li,li , then the injective hull of M is

a direct sum of injective modules of type Qi,li . Therefore M lies in F (∆) by part 3

and part 1.

2.5.2 The structure of an ultra strongly quasihereditary al-
gebra

Let (B,Φ,v) be a RUSQ algebra, and consider an injective B-module of type Qi,li .

By Proposition 2.5.6, Qi,li is isomorphic to T (i, 1). As we shall see shortly, every

module T (i, j) may be determined recursively from T (i, 1). The next lemma will be

useful when proving this claim.

Lemma 2.5.7. Let (B,Φ,v) be an arbitrary quasihereditary algebra. For i ∈ Φ

consider the short exact sequence

0 Y (i) T (i) ∇ (i) 0
ψ

, (2.7)

as in (1.5), Theorem 1.4.14 (i.e. with ψ a right minimal F (∆)-approximation of ∇ (i)

and with Y (i) a module lying in F ({∇ (j) : j < i})). Then:

1. Rad ∆ (i) is a submodule of Y (i);

2. for every morphism f : T (i) −→ ∇ (i), there is a map h in the division ring

EndB (∇ (i)) such that f = h ◦ ψ;

3. if M ⊆ T (i), with M a module in F (∇) and T (i) /M a costandard module,

then T (i) /M = ∇ (i) and M = Y (i).
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Proof. Consider the exact sequence

0 ∆ (i) T (i) X (i) 0
φ

, (2.8)

as in (1.4), Theorem 1.4.14, where X (i) lies F ({∆ (j) : j < i}). We may regard ∆ (i)

as a submodule of T (i). The image of ∆ (i) under ψ must be the socle of ∇ (i), since

Li occurs only once as a composition factor of T (i). This proves part 1.

Now apply the functor HomB (−,∇ (i)) to (2.8). We have HomB (X (i) ,∇ (i)) =

0, as Li is not a composition factor of X (i). Because of this, and also because

Ext1
B (F (∆) ,F (∇)) = 0 (see Lemma 1.4.8), we get an isomorphism

HomB (T (i) ,∇ (i)) −→ HomB (∆ (i) ,∇ (i))

of S-modules, where S := EndB (∇ (i)) is a division ring. By Lemma 1.4.11, the

module HomB (∆ (i) ,∇ (i)) is 1-dimensional over S. So HomB (T (i) ,∇ (i)) is 1-

dimensional over S as well, which proves part 2.

For part 3, note that the epic f : T (i) −→ T (i) /M must be a right F (∆)-

approximation of T (i) /M , as Ext1
B (F (∆) ,M) = 0 (consult Subsection 1.2.2 for

the definition of right approximation). Since T (i) is an indecomposable module, the

map f is in fact a right minimal F (∆)-approximation of T (i) /M . Suppose that

T (i) /M = ∇ (j). So both f and ψ : T (j) −→ ∇ (j) are right minimal F (∆)-

approximations of ∇ (j). As a consequence, T (j) and T (i) must be isomorphic (see

Subsection 1.2.2), so j = i. If we look at Y (i) as a submodule of T (i), then part 2

implies that ι = ι′◦t, where t is an isomorphism and ι : Y (i) −→ T (i), ι′ : M −→ T (i)

are the inclusion maps. Thus M = Y (i).

We are now in position of proving one of the main results of this chapter.

Theorem 2.5.8. Let (B,Φ,v) be a RUSQ algebra. Then Qi,li = T (i, 1) and, for

every (i, j) ∈ Φ, we have the following short exact sequence

0 T (i, j + 1) T (i, j) ∇ (i, j) 0
ψ

, (2.9)

where T (i, li + 1) := 0. In particular,

0 ⊂ T (i, li) ⊂ · · · ⊂ T (i, j) ⊂ · · · ⊂ T (i, 1) = Qi,li (2.10)

is the unique ∇-filtration of T (i, 1).
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Proof. By part 3 of Proposition 2.5.6, we must have Qi,li = T (i, 1). We will prove by

induction on k, that there is a filtration

T (i, k) ⊂ T (i, k − 1) ⊂ · · · ⊂ T (i, 1) = Qi,li .

For k = 1 the claim is obvious. Suppose that the claim holds for all k ≤ j. We get

that T (i, j) ⊆ T (i, 1) = Qi,li . Consider the short exact sequence

0 Y (i, j) T (i, j) ∇ (i, j) 0
ψ

(as in (1.5), with Y (i, j) ∈ F ({∇ (k, l) : (k, l) < (i, j)})). Suppose that j 6= li. The

map ψ cannot be an isomorphism, as Soc∇ (i, j) = Li,j and SocT (i, j) = Li,li . Since

Y (i, j) ⊆ T (i, j), we get that SocY (i, j) = Li,li . Therefore Y (i, j) is indecomposable.

Since F (∆) is closed under submodules, we must have Y (i, j) ∈ F (∆)∩F (∇). Thus

Y (i, j) = T (i, l), for some 1 ≤ l ≤ li (note that ∆ (k, l) ⊆ T (k, l), so T (k, l) must

have the summand Lk,lk in its socle). From Lemma 2.5.7 and Proposition 2.5.6, we

also know that Rad ∆ (i, j) = ∆ (i, j + 1) is contained in Y (i, j) = T (i, l). Hence

(i, j + 1) v (i, l), so j + 1 ≥ l. We cannot have l ≤ j, otherwise, as ∆ (i, l) is a

submodule of T (i, l), Li,j would be a composition factor of Y (i, j). Thus l = j + 1

and Y (i, j) = T (i, j + 1). This proves the existence of the chain of modules (2.10),

and shows that T (i, j)/T (i, j + 1) ∼= ∇(i, j) for 1 ≤ j < li.

In order to prove that T (i, li) ∼= ∇ (i, li), observe that

Y (i, li) ⊆ T (i, li) ⊆ Qi,li .

But then Y (i, li) = 0, otherwise Y (i, li) would have socle Li,li . Therefore T (i, li) ∼=
∇ (i, li), and we get a ∇-filtration as in (2.10), with factors as described in (2.9). Part

3 of Lemma 2.5.7 assures the uniqueness of this ∇-filtration.

Remark 2.5.9. Let 1 ≤ j < j′ ≤ li. Then T (i, j′) is a submodule of T (i, j). We claim

that the B-module T (i, j) /T (i, j′) is indecomposable. In order to see this, note that

T (i, j) /T (i, j′) belongs to F (∇). To be precise, the module T (i, j) /T (i, j′) must

have a unique ∇-filtration as this is the case of T (i, 1) (look at (2.10)). Since F (∇)

is closed under direct summands, every module having a unique ∇-filtration must be

indecomposable.

From the filtration (2.10), it is not difficult to conclude that T (i, j) is isomor-

phic to Rej(Qi,li ,
⊕

(k,l): (k,l)=(i,j)Qk,l) (using the property of the ∇-filtrations stated

in Proposition 1.4.6). This alternative characterisation of the tilting modules T (i, j)

will be useful in Chapter 3.
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Lemma 2.5.10. Let (B,Φ,v) be a RUSQ algebra. Then

T (i, j) = Rej

Qi,li ,
⊕

(k,l): (k,l)=(i,j)

Qk,l

 = Rej

Qi,li ,
⊕

(k,l): (k,l)6v(i,j)

Qk,l

 .

In particular, T (i, j) is the largest submodule of Qi,li whose composition factors are

all of the form Lk,l, with (k, l) v (i, j).

Proof. We give an explicit prove of this result. Recall the characterisation of the

reject of injectives in Remark 1.4.1. By Theorem 2.5.8, the module Qi,li/T (i, j) has

a ∇-filtration whose factors are ∇ (i, 1), ∇ (i, 2) , . . . ,∇ (i, j − 1). So Qi,li/T (i, j) is

cogenerated by the injectives Qk,l, with (k, l) = (i, j), that is

Rej

Qi,li ,
⊕

(k,l): (k,l)=(i,j)

Qk,l

 ⊆ T (i, j) .

On the other hand, all composition factors of T (i, j) are of the form Lk,l, with (k, l) 6=
(i, j). This proves that T (i, j) is contained in Rej(Qi,li ,

⊕
(k,l): (k,l)=(i,j) Qk,l).

The proof of the other equality in the statement of the lemma follows from Propo-

sition 1.4.6 (alternatively, it can be established directly in a similar way).

As we shall see next, the injective indecomposable modules over a RUSQ algebra

can be determined from the filtrations (2.10) in Theorem 2.5.8. Furthermore, we

claim that Qi,j/∇ (i, j) is isomorphic to Qi,j−1 for 1 < j ≤ li, and that Qi,1
∼= ∇ (i, 1).

Proposition 2.5.11. Let (B,Φ,v) be a RUSQ algebra. For every (i, j) ∈ Φ, there

are short exact sequences

0 ∇ (i, j) Qi,j Qi,j−1 0, (2.11)

0 T (i, j + 1) T (i, 1) Qi,j 0, (2.12)

where Qi,0 := 0. Moreover, the module Qi,j has a unique ∇-filtration.

Proof. By Theorem 2.5.8, we have the exact sequences

0 T (i, j) /T (i, j + 1) Qi,li/T (i, j + 1) Qi,li/T (i, j) 0 , (2.13)

where T (i, li + 1) = 0 and T (i, j) /T (i, j + 1) ∼= ∇ (i, j), 1 ≤ j ≤ li. By Theorem

2.4.3, the modules T (i, j), 1 ≤ j ≤ li, have injective dimension at most one. As

46



Qi,li is the injective hull of T (i, j), we get that all Qi,li/T (i, j) are injective. The

modules Qi,li/T (i, j + 1) have a unique ∇-filtration by Theorem 2.5.8, so they are

indecomposable (see Remark 2.5.9). Therefore Qi,li/T (i, j + 1) is the injective hull of

∇ (i, j) for every 1 ≤ j ≤ li, which shows that Qi,li/T (i, j + 1) = T (i, 1) /T (i, j + 1)

is isomorphic to Qi,j. This produces the short exact sequence (2.12) in the statement

of this proposition. Now (2.13) gives the exact sequence (2.11).

2.6 The Ringel dual of an ultra strongly quasi-

hereditary algebra

Recall the general setup for the Ringel dual of a quasihereditary algebra summarised

in Subsection 1.4.3. In this section we study the Ringel dualR (B) of a RUSQ algebra

B. The main goal is to show that R (B) op is also a RUSQ algebra, or, in other words,

that R (B) is a LUSQ algebra.

Assume that (B,Φ,v) is a RUSQ algebra and label the simple B-modules by

(i, j), as described in (2.6). The algebra R (B) is quasihereditary with respect to the

poset (Φ,v op). Following Subsection 1.4.3, denote by L′i,j, P
′
i,j, T

′ (i, j), ∇ (i, j)′, re-

spectively, the simple R (B)-modules, the projective indecomposable R (B)-modules,

etc., as naturally expected.

Let D be the standard duality for the Artin algebraR (B) (see Subsection 1.2.1.1).

Then the standard modules over R (B) op are the modules D(∇′ (i, j)), and the inde-

composable injectives are the modules D(P ′i,j). To verify that (A1) and (A2) hold for

R (B) op, we need to show that

(A1*) ∇′ (i, j) /L′i,j is in F (∇′);

(A2*) if ∇′ (i, j) is simple, then P ′i,j has a ∇′-filtration (i.e. it is a tilting module).

From the quasihereditary structure of B we can immediately deduce some prop-

erties of R (B).

(I) We have that P ′i,1
∼= T ′ (i, li) as T (i, 1) is isomorphic to Qi,li (see the identities

(1.6) in Remark 1.4.16).

(II) By applying the functor HomB (T,−) to the exact sequence (2.9) in the state-

ment of Theorem 2.5.8, we get (using Remark 1.4.16)

0 P ′i,j+1 P ′i,j ∆′ (i, j) 0 ,
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where P ′i,li+1 := 0. In particular, the standard R (B)-modules have projective

dimension at most one. By the dual version of Theorem 2.4.3, this implies that

the category F (∇′) is closed under quotients and that R (B) satisfies condition

(A1*). In other words, R (B) is a left strongly quasihereditary algebra.

(III) Using the functor HomB (T,−) and Remark 1.4.16, we get from the filtration

(2.10) that the module P ′i,1
∼= T ′ (i, li) has a unique ∆′-filtration, given by

0 ⊂ P ′i,li ⊂ · · · ⊂ P ′i,j ⊂ · · · ⊂ P ′i,1 = T ′ (i, li) .

The quotients of this filtration are as described in (II).

Theorem 2.6.1. Using the previous notation, (R (B) ,Φ,v op) is a LUSQ algebra.

The following holds:

1. P ′i,1
∼= T ′ (i, li);

2. if 1 ≤ j < li, then T ′ (i, j) ∼= P ′i,1/P
′
i,j+1;

3. F (∇′) is closed under factor modules;

4. for (i, j) ∈ Φ, the costandard module ∇′ (i, j) has Loewy length j, is uniserial,

and satisfies

∇′ (i, j − 1) ∼= ∇′ (i, j) /L′i,j.

Proof. Part 1 and part 3 are answered, respectively, in (I) and (II) above. Part 2

follows by applying the functor HomB (T,−) to (2.12) in Proposition 2.5.11.

To prove part 4 and show that (R (B) ,Φ,v) is a LUSQ algebra, apply Lemma

1.4.11 to (III). This yields

dimEndR(B)(∇′(i,j)) HomR(B)

(
P ′k,l,∇′ (i, j)

)
= (P ′k,l : ∆′ (i, j)) =

{
1 if k = i and l ≤ j,

0 otherwise.
(2.14)

As a consequence, the composition factors of∇′ (i, j) are L′i,1, . . . , L
′
i,j, with L′i,j having

multiplicity one in ∇′ (i, j). In particular, ∇′ (i, 1) ∼= L′i,1, and these are all the simple

costandard modules. This observation, together with part 1, implies that R (B)

satisfies axiom (A2*). By (II), R (B) also satisfies (A1*), so (R (B) ,Φ,v op) is a

LUSQ algebra. By the dual version of Proposition 2.5.5, any nonzero quotient of a

costandard R (B)-module is still a costandard module. Consequently, ∇′ (i, j) /L′i,j
is a costandard module whose composition factors are L′i,1, . . . , L

′
i,j−1. This implies

that ∇′ (i, j) /L′i,j ∼= ∇′ (i, j − 1), 1 < j ≤ li.
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2.7 The ADR algebra of a certain Brauer tree al-

gebra

Brauer tree algebras are a class of algebras of finite representation type. They include

all blocks of group algebras of finite type, and also all blocks of type A Hecke algebras

of finite type ([42]). In this section we determine the quiver presentation of the ADR

algebra RA of A, when A is the Brauer tree algebra KQ/I, with K an arbitrary field,

Q the quiver

1◦ 2◦ · · · n−1◦ n◦
α1

β1

α2

β2

αn−2

βn−2

αn−1

βn−1

and I the admissible ideal of KQ generated by the relations

αi+1αi, βiβi+1, αiβi − βi+1αi+1, i = 1, . . . , n− 2.

The Brauer tree algebra A plays an important role in the representation theory

of the symmetric group. Indeed, let Σm be the symmetric group on m letters. If K

is a field of prime characteristic p, then any nonsimple block of KΣm of finite type

is Morita equivalent to the principal block of KΣp. Consider the algebra A defined

above, with K a field of prime characteristic p and with n = p− 1. In this case A is a

basic algebra of the principal block of KΣp. Moreover, the vertex i in the quiver of A

may be thought as corresponding to the simple KΣp-module labelled by the (hook)

partition (p+ 1− i, 1i−1) of p. We refer to [54] for further details.

Since I is generated by monomial relations and by commutative relations between

paths of the same length, the projective indecomposable A-modules may be repre-

sented by graphs in the following way

1

2

1

,

n

n− 1

n

,

i

i− 1 i+ 1

i

, i = 2, . . . , n− 1.

Denote the projective A-module corresponding to the vertex i by Pi.

According to Proposition 2.3.4, the RA-modules Pi,1 = ∆ (i, 1) are uniserial, with

Loewy length 3, and with composition factors Li,1, Li,2, and Li,3, ordered from the top

to the socle. Furthermore, these projectives determine all the standard RA-modules.

Consider now (for 2 ≤ i ≤ n− 1) the short exact sequence

0 Li+1 ⊕ Li−1 Pi/Rad2 Pi Li 0π ,
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and apply HomA (G,−) to it. We get the exact sequence

0 ∆ (i+ 1, 1)⊕∆ (i− 1, 1) Pi,2 ∆ (i, 1)
π∗ ,

and as π∗ 6= 0, we must have Imπ∗ = ∆ (i, 2), since ∆ (i, 2) is the unique submodule

of ∆ (i, 1) whose top is Li,2. Note that this is exactly what Proposition 2.3.4 is telling

us. Similarly, we get

0 HomA (G,RadPi) Pi,3 ∆ (i, 3) 0 ,

and as ∆ (i, 3) = Li,3, it follows that HomA (G,RadPi) = RadPi,3.

We wish to obtain a quiver presentation KQ′/I ′ for RA. As before, denote by

(i, j) the vertex of Q′ corresponding to the simple RA-module Li,j.

Proposition 2.7.1. The algebra RA is isomorphic to KQ′/I ′, with Q′ the quiver

(1,1)
◦

(2,1)
◦ · · ·

(n−1,1)
◦

(n,1)
◦

(1,2)
◦

(2,2)
◦ · · ·

(n−1,2)
◦

(n,2)
◦

(1,3)
◦

(2,3)
◦ · · ·

(n−1,3)
◦

(n,3)
◦

t
(2)
1 t

(2)
2 t

(2)
n−1 t

(2)
n

t
(3)
1

α1
(1)

t
(3)
2

α2
(1)

β1
(1) β2

(1)

αn−2
(1)

t
(3)
n−1

αn−1
(1)

βn−2
(1)

t
(3)
n

βn−1
(1)

α1
(2) α2

(2)

β1
(2) β2

(2)

αn−2
(2) αn−1

(2)

βn−2
(2)

βn−1
(2)

and I ′ the admissible ideal generated by the relations

α
(1)
i t

(2)
i , β

(1)
i t

(2)
i+1, α

(2)
i t

(3)
i − t

(2)
i+1α

(1)
i , β

(2)
i t

(3)
i+1 − t

(2)
i β

(1)
i , i = 1, . . . , n− 1,

αi+1
(1)αi

(2), βi
(1)βi+1

(2), αi
(1)βi

(2) − βi+1
(1)αi+1

(2), i = 1, . . . , n− 2.

Proof. The vertical arrows in the quiver above correspond to the structure of the

uniserial projectives Pi,1. In fact, going back to [57], one sees that the arrows

(i,j−1)
◦

(i,j)
◦

t
(j)
i

correspond to the canonical epics

Pi/Radj Pi Pi/Radj−1 Pi

in modA. Let Q′ be the ordinary quiver of RA. Note that there must be exactly one

arrow coming out of the vertices (i, 1) of Q′, namely the arrow t
(2)
i (remember that
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RadPi,1 has simple top Li,2 by Corollary 2.3.2). Consider now the vertices (i, 3) of

Q′. Because Pi has Loewy length 3, it follows that

RadPi,3 = HomA (G,RadPi) .

It is not difficult to show directly that RadPi,3 has top Li−1,2⊕Li+1,2, 2 ≤ i ≤ n− 1.

This also follows from Theorem A in Chapter 3. Consequently, there are exactly two

arrows with source (i, 3) in Q′ (for 2 ≤ i ≤ n − 1), and they must be as depicted

in the quiver above. Finally, let us analyse the vertices (i, 2) of Q′. There are no

arrows from (i, 2) to a vertex (j, 2). This is because the poset (Λ,�) is adapted to

RA (recall Definition 1.4.2), and also because [∆(i, 2) : Li,2] = 1. By the structure of

the modules ∆ (i, 2), there are no arrows from (i, 2) to (j, 3) apart from the arrow t
(3)
i

already mentioned. So any other arrow in Q′ having source (i, 2) (if any) must have

sink (j, 1). That is, it must correspond to a map

Lj Pi/Rad2 Pi

in modA. Conversely, any monic as the one above must correspond to an arrow from

(i, 2) to (j, 1) in Q′ because, by what we have seen so far, there are no alternative

paths from (i, 2) to (j, 1) in Q′. As a consequence, there must be two more arrows

with source (i, 2) (if 2 ≤ i ≤ n− 1), namely

(i,2)
◦

(i−1,1)
◦

β
(1)
i−1

,
(i,2)
◦

(i+1,1)
◦

α
(1)
i

This proves that Q′ coincides with the quiver in the statement of the proposition.

We have that RA
∼= KQ′/I ′, for a certain admissible ideal I ′. By the structure of

Pi,1 (see Corollary 2.3.2) the paths α
(1)
i t

(2)
i , β

(1)
i t

(2)
i+1 must be zero modulo I ′. Besides,

α
(2)
i t

(3)
i − t

(2)
i+1α

(1)
i must also be zero modulo I ′ as the underlying diagram

Pi+1/Rad2 Pi+1 Pi/Rad3 Pi

Li+1 Pi/Rad2 Pi

6=0

commutes. Similarly, it follows that β
(2)
i t

(3)
i+1 − t

(2)
i β

(1)
i must be zero modulo I ′. In

a similar fashion one checks that the remaining relations in the statement of the

proposition are zero modulo I ′. Let Î be the ideal of KQ′ generated by the relations

indicated in the statement of the proposition. There is an epic from KQ′/Î to RA.
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It is not difficult to check that RA has dimension 19n − 10 as a K-vector space. It

is also easy to prove by induction on n that the dimension of KQ′/Î is given by the

same number, which implies that KQ′/Î ∼= RA.

We conclude this chapter with some remarks about the algebra RA = KQ′/I ′, and

with a result describing the ADR algebra of KΣp (up to Morita equivalence) when

K is a field of prime characteristic p.

Remark 2.7.2. Note that the arrows β
(1)
i−1, α

(1)
i in Q′ correspond to irreducible maps

in modA (for the definition of irreducible morphism see [8, Section V.5]). Let

M be a module in modA. It is clear that any irreducible map f : X −→ Y ,

with X, Y in addM , gives rise to a morphism f∗ = HomA (M, f) between pro-

jective modules in mod(EndA(M)op), satisfying Im f∗ ⊆ Rad(HomA (M,Y )), Im f∗ 6⊆
Rad2(HomA (M,Y )).

Remark 2.7.3. Let A be as before. By Theorem 10.3 in [5] (see also Corollary 3.3.12

in Chapter 3), gl. dimRA ≤ 3. Proposition 2 in [56] implies that gl. dimRA 6= 2.

Hence gl. dimRA = 3. Moreover, Theorem B in Chapter 3 will imply that the Ringel

dual of RA is isomorphic to (RA) op for every Brauer tree algebra A.

Remark 2.7.4. Let A = KQ/I be a presentation of some finite-dimensional K-algebra

A by a quiver and admissible relations. There is an algorithmic procedure to compute

a presentation of RA in terms of quivers and relations.

Let A be an Artin algebra and suppose that A =
⊕r

j=1 Ij is a block decomposition

of A, i.e. a decomposition of A into a direct sum of indecomposable ideals (so Ij = Aξj,

where {ξj : j = 1, . . . , r} is a maximal set of central, pairwise orthogonal idempotents

in A). Since there are no homomorphisms between (indecomposable) modules in

distinct blocks, and since RA is defined as an endomorphism algebra, then we have

an isomorphism of algebras

RA
∼=

r⊕
j=1

RIj ,

which in fact corresponds to the block decomposition of RA. Using this observation,

together with Proposition 2.7.1 and the facts about the algebra of the symmetric

group mentioned in the beginning of this section, we deduce the following result.

Theorem 2.7.5. Let A = KΣp, where K is a field of characteristic p. Then RA is

Morita equivalent to

KQ′/I ′ ⊕ C,

where Q′ and I ′ are as in Proposition 2.7.1, and C is a product of fields.
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Chapter 3

∆-semisimple filtrations, and the
relationship between R(RA) and
RAop

3.1 Overview of the chapter

This chapter complements the investigation done in Chapter 2. We start by studying

the ∆-filtrations of modules over RUSQ algebras and then specialise to the ADR

algebra. Our preliminary conclusions about these algebras are then used to derive

the main contributions of this chapter: we give a counterexample to a claim by

Auslander–Platzeck–Todorov and prove a theorem relating the Ringel dual of the

algebra RA to the algebra RAop . We now proceed to give a more detailed description

of the contents of this chapter.

In Section 3.2, we show that the RUSQ algebras satisfy the following key property:

every submodule of a direct sum of standard modules is still a direct sum of stan-

dard modules. This has several consequences and, in particular, gives rise to special

filtrations of ∆-good modules over the ADR algebra RA.

Next, we describe the right minimal addG-approximations of rigid modules in

modA, or equivalently, the projective covers of the RA-modules HomA (G,M), with

M rigid. Recall that a module is said to be rigid if its radical series coincides with

its socle series. We prove the following theorem in Section 3.3.

Theorem A. Let M be a rigid module in modA, with Loewy length m. Then the

projective cover of M in mod(A/RadmA) is a right minimal addG-approximation of

M .

This simple yet useful result, combined with the conclusions in Section 3.2, is then
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used to provide a counterexample to a claim by Auslander, Platzeck and Todorov in

[6], about the projective resolutions of modules over the ADR algebra.

Theorem A is also a key ingredient in the proof of the central result of this chapter,

Theorem B, which is concerned with the Ringel dual of the algebra RA.

Theorem B. Let A be an Artin algebra with Loewy length L and assume that all

projective and injective indecomposable A-modules are rigid with Loewy length L.

The Ringel dual of the quasihereditary algebra (RA,Λ,�) is isomorphic to the algebra

(RAop)
op.

The proof of Theorem B, or rather the technical results used to establish it,

occupy a considerable portion of this chapter (Section 3.4). These preparatory results

are of independent interest. Theorem 3.4.5 provides a complete description of the

∆-filtrations of the tilting RA-modules in terms of the socle series of the injective

indecomposable A-modules, when A is an Artin algebra whose projectives are rigid

modules with Loewy length L = LL(A). Philosophically speaking, the technicalities

in Section 3.4 are due to the fact that we are seeking to identify two algebras in a

“noncanonical way”.

3.2 ∆-semisimple modules and ∆-semisimple fil-

trations

For a quasihereditary algebra (B,Φ,v), we say that a B-module is ∆-semisimple if it

is a direct sum of standard modules. Every module M in F (∆) has some submodule

N such that:

(B) N is ∆-semisimple and M/N is in F (∆).

Given a module M in F (∆), we may consider the submodules of M which are max-

imal with respect to property (B). The module M may have more than one such

submodule (see Example 2.20 in [46]). However, according to [46], the submodules of

M which are maximal with respect to (B) are unique up to isomorphism.

Suppose now that B is a RUSQ algebra. The ∆-semisimple modules over RUSQ

algebras are particularly well behaved. As we will see in Corollary 3.2.3, the property

of being ∆-semisimple is closed under submodules in this case. Furthermore, every

module M in F (∆) has exactly one submodule DM which is maximal with respect to

property (B). The module DM is actually the unique maximal ∆-semisimple submod-

ule of M (with respect to inclusion). Moreover, DM will be obtained by applying a
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certain hereditary preradical (as in Definition 1.3.7) to the module M . Since M/DM

still lies in F (∆), we may proceed iteratively and define the ∆-semisimple filtration

(which will be unique) and the ∆-semisimple length of any module in F (∆). We

shall see that the ∆-semisimple filtrations exhibit properties similar to those of a

socle series.

3.2.1 ∆-semisimple modules

We are interested in submodules of ∆-good modules which are maximal with respect

to property (B). As a consequence of Theorem 2.17 in [46]1, these are unique up to

isomorphism.

Theorem 3.2.1 ([46, Theorem 2.17]). Let (B,Φ,v) be a quasihereditary algebra,

and let M be in F (∆). Any two submodules of M which are maximal with respect to

property (B) are isomorphic.

We wish to study the ∆-semisimple modules over a RUSQ algebra (B,Φ,v).

Throughout this chapter we will adopt the notation introduced in Subsection 2.5.1.

In particular, we shall assume that the set Φ is as described in (2.6) (recall that this

assumption can always be made). In this subsection we prove some key properties of

the ∆-semisimple modules over RUSQ algebras. Namely, we show that the property

of being ∆-semisimple is closed under taking submodules.

Recall that the standard modules over a RUSQ algebra (B,Φ,v) are uniserial and

satisfy Rad ∆ (i, j) = ∆ (i, j + 1). The module ∆ (i, j), (i, j) ∈ Φ, has composition

factors Li,j, . . . , Li,li , ordered from the top to the socle (see Proposition 2.5.6).

Lemma 3.2.2. Let (B,Φ,v) be a RUSQ algebra. Let M be in modB and consider

a short exact sequence

0 ∆ (k, l) M ∆ (i, j) 0 , (3.1)

with (k, l), (i, j) ∈ Φ. If SocM 6∼= Soc ∆ (k, l), then (3.1) splits.

Proof. We prove this statement by descending induction on j. For j = li we have

∆ (i, j) = ∆ (i, li) = Li,li . If SocM is not isomorphic to Soc ∆ (k, l), then the corre-

sponding exact sequence (3.1) splits.

1The notion of a “Θ-semisimple subobject” introduced in this paper is stronger than ours. That
is, in [46] a “∆-semisimple submodule” would be a submodule satisfying property (B).
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Suppose now that j ≤ li − 1 and consider the pullback diagram

0 0

0 ∆ (k, l) N ∆ (i, j + 1) 0

0 ∆ (k, l) M ∆ (i, j) 0

Li,j Li,j

0 0

f ′

ι′ ι

f

coker ι′ coker ι

, (3.2)

where SocM 6∼= Soc ∆ (k, l) (so SocM ∼= Soc ∆ (k, l)⊕Soc ∆ (i, j) ∼= Lk,lk⊕Li,li). We

wish to prove that f is a split epic.

Look at the central column of (3.2). We claim that SocN 6∼= Soc ∆ (k, l). In

fact, SocN ∼= Soc ∆ (k, l), together with SocM 6∼= Soc ∆ (k, l), would imply that

SocM ∼= SocN ⊕ Li,j ∼= Lk,lk ⊕ Li,j, which would lead to a contradiction since

j ≤ li − 1. Consequently, SocN 6∼= Soc ∆ (k, l) and the short exact sequence in the

top row of (3.2) splits by induction. Let µ be such that f ′◦µ = 1∆(i,j+1), and consider

the commutative diagram

0 0

∆ (k, l) Kerh

0 ∆ (i, j + 1) M W 0

0 ∆ (i, j + 1) ∆ (i, j) Li,j 0

0 0

∼

ι′◦µ

f ∃h

ι

, (3.3)

where W := Coker(ι′ ◦ µ).

Our goal is to prove that the central column of (3.3) splits. Suppose, by contra-

diction, that this exact sequence does not split. Then the right hand column does not
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split either. As a consequence, the modules W and Kerh have the same socle, namely

SocW ∼= Soc ∆ (k, l) ∼= Lk,lk . Proposition 2.5.6 implies that W is in F (∆). The mod-

ule W has exactly one composition factor of the form Lx,lx (as j ≤ li−1). This means

that W must be a standard module (see Proposition 2.5.6). Hence (i, j) = (k, l− 1).

Since (k, l−1) 6< (k, l), part 1 of Lemma 1.4.5 implies that the central column of (3.3)

splits, which contradicts our assumption. This finishes the proof of the lemma.

We now use the previous result to give a characterisation of the ∆-semisimple

modules over a RUSQ algebra.

Corollary 3.2.3. Let (B,Φ,v) be a RUSQ algebra and let M be in F (∆). Then M

is ∆-semisimple if and only if the number of simple summands of SocM coincides

with the number of factors in a ∆-filtration of M . Moreover, any submodule of a

∆-semisimple module is still ∆-semisimple.

Proof. Let M be in F (∆). Denote by P(M) the following assertion: “the number

of simple summands of SocM coincides with the number of factors in a ∆-filtration

of M”. By parts 4 and 5 of Proposition 2.5.6, P(M) is true if and only if the

composition factors of M of type Lx,lx are exactly the summands of its socle. From

this equivalence, it is easy to see that the truth of P(M) implies the truth of P(N)

for N ⊆ M (note that the inclusion of N in M induces a monic from N/ SocN to

M/ SocM – see Example 1.3.8 and Lemma 1.3.9).

If M is a ∆-semisimple module then P(M) is clearly true. Suppose now that

P(M) holds for M ∈ F (∆). We wish to show that M is ∆-semisimple. We prove

this by induction on the number z of factors in a ∆-filtration of M . If z = 1 the

result is obvious. Suppose now that z ≥ 2, and consider a short exact sequence

0 Ker f M ∆ (i, j) 0
f

,

where Ker f ∈ F(∆). Since P(M) holds, then P(Ker f) also holds by the previous

remark. By induction, Ker f must be a ∆-semisimple module. Consider now the

pushout diagram

0 Ker f M ∆ (i, j) 0

0 ∆ (k, l) N ∆ (i, j) 0

ker f

π π′

f

h

, (3.4)

where π is a split epic mapping the ∆-semisimple module Ker f onto a standard

module ∆ (k, l). Observe that SocM ∼= Soc(Ker f)⊕ Soc ∆ (i, j), as the composition
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factors of M of type Lx,lx are exactly the summands of its socle. Recall that Soc (−)

is a left exact functor (see Lemma 1.3.9). By applying Soc (−) to (3.4), we get a

new diagram where the top row remains exact, and consequently the bottom row also

remains exact. Thus SocN 6∼= Soc ∆ (k, l), and, by Lemma 3.2.2, the bottom row of

(3.4) splits. So there is an epic ρ satisfying ρ ◦ h = 1∆(k,l). Since π is a split epic,

there is a monic µ such that π ◦µ = 1∆(k,l). Notice that (ker f)◦µ is a split monic, as

ρ ◦ π′ ◦ (ker f) ◦ µ = ρ ◦ h ◦ π ◦ µ = 1∆(k,l).

So M ∼= ∆ (k, l) ⊕ M ′, for some module M ′ in modB. The module M ′ lies in

F (∆) since this category is closed under submodules. In fact, P(M ′) is true by the

observation in the beginning of the proof. By induction, the module M ′ must be

∆-semisimple. Therefore M is ∆-semisimple as well. This proves the first claim in

the statement of the corollary.

Let now N be a submodule of a ∆-semisimple module M . Then P(M) is true,

which implies that P(N) holds. The first claim implies that N is ∆-semisimple.

In the next subsection we are going to show that the ∆-good modules over a

RUSQ algebra have a unique maximal ∆-semisimple submodule. First, we check that

arbitrary quasihereditary algebras do not possess this property.

Example 3.2.4. Consider the quiver

Q =

0 1

3 2

α

ε

δ
γ1

β

γ0

,

and the bound quiver algebra B = KQ/I, where I is the ideal generated by the

elements εβ− δγ0 and γ0γ1. It is easy to check that B is quasihereditary with respect

to the labelling poset 0 < 1 < 2 < 3. The modules

0 ,
1

0 0

ε α ,

2

1

0
α

,

3

0 2

1

0
α

.
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are the corresponding standard B-modules. The projective cover P2 of the simple

module with label 2 has the following structure

2

3 1

2 0 0

1

0

ε α

α

.

The modules ∆ (1) ⊕ ∆ (2) and ∆ (3) ⊕ ∆ (0) are both maximal ∆-semisimple sub-

modules of P2. The quotient of P2 by each of these submodules does not belong to

F (∆), i.e. none of these submodules of P2 satisfies property (B).

3.2.2 The preradical δ and ∆-semisimple filtrations

Let (B,Φ,v) be an arbitrary quasihereditary algebra. As pointed out in the previous

subsection, the submodules of a module M in F (∆) which are maximal with respect

to property (B) are all isomorphic, but they are not necessarily unique. We have

also seen that a module M in F (∆) may have more than one maximal ∆-semisimple

submodule with respect to inclusion (Example 3.2.4). We shall prove that both these

maximal submodules are unique and actually coincide when the underlying algebra

is a RUSQ algebra. For this, we use the general theory of preradicals introduced in

Section 1.3.

Recall the definition of a hereditary class (Definition 1.3.13).

Lemma 3.2.5. Let (B,Φ,v) be a RUSQ algebra. The corresponding set ∆ of stan-

dard B-modules is a hereditary class in modB. In particular, Tr (∆,−) is a hereditary

preradical in modB.

Proof. Let N be a submodule of a module in add ∆, so N is contained in some ∆-

semisimple module M . By Corollary 3.2.3, N is still ∆-semisimple, so it is trivially

generated by ∆. Hence the set ∆ is hereditary. Lemma 1.3.14 implies that Tr (∆,−)

is a hereditary preradical in modB.

From now onwards we shall denote the functor Tr (∆,−) by δ.

Definition 3.2.6. For a RUSQ algebra (B,Φ,v), let δ be the hereditary preradical

Tr (∆,−) in modB.
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Next, we give a description of the submodule δ (M) of a module M ∈ F (∆).

Proposition 3.2.7. Let (B,Φ,v) be a RUSQ algebra, and let M ∈ F (∆). Then

δ (M) is the largest ∆-semisimple submodule of M . Furthermore, M/δ (M) lies in

F (∆). In particular, δ (M) is the largest submodule of M satisfying property (B).

Proof. By the definition of Tr (∆,−), there is an epic f from a ∆-semisimple module

M ′ to δ (M). Note that δ (M) is in F (∆), since this category is closed under sub-

modules. By parts 5 and 3 of Lemma 1.4.8, f must be a split epic. Hence δ (M)

is ∆-semisimple. By the definition of Tr (∆,−) it is clear that every ∆-semisimple

submodule of M must be contained in δ (M). This shows that δ (M) is the largest

∆-semisimple submodule of M ∈ F (∆).

To conclude this proof it is enough to show that M/δ (M) lies in F (∆). We start

by proving that this holds for the injective modules Qi,li = T (i, 1) (recall Proposition

2.5.6). Note that ∆ (i, 1) ⊆ δ (Qi,li), as ∆ (i, 1) is a submodule of T (i, 1). Since Qi,li

has simple socle Li,li , then δ (Qi,li) has to be isomorphic to some standard module

∆ (i, j). But then we must have ∆ (i, 1) = δ (Qi,li), and consequently Qi,li/δ (Qi,li) =

T (i, 1) /∆ (i, 1) is in F (∆). Let now Q be a finite direct sum of injective modules

of type Qi,li . The module Q/δ (Q) still lies in F (∆) because preradicals preserve

finite direct sums (see part 3 of Lemma 1.3.3). Consider now M in F (∆). By

Proposition 2.5.6, the injective hull q0 : M −→ Q0 (M) of M ∈ F (∆) is such that

Q0 (M) is a direct sum of injectives of type Qi,li . By part 3 of Lemma 1.3.9, q0 gives

rise to a monic M/δ (M) −→ Q0 (M) /δ(Q0 (M)), and by our previous observation

Q0 (M) /δ(Q0 (M)) lies in F (∆). As F (∆) is closed under submodules, the module

M/δ (M) belongs to F (∆).

Example 3.2.8. Note that for an arbitrary quasihereditary algebra the modules

δ (M), M ∈ F (∆), are not usually ∆-semisimple (not even ∆-good). Indeed, for

the algebra in Example 3.2.4, we have δ (P2) = Tr (∆, P2) = RadP2, which is not

∆-semisimple.

Note that δ (M) 6= 0 for every nonzero module M in modB as

SocM ⊆ Tr (∆,M) = δ (M) .

In fact, we have SocM = Soc δ (M). We may construct the preradicals δm in modB

defined recursively in Subsection 1.3.3. The odd numbered parts of Lemma 1.3.18,

as well as Lemmas 1.3.19 and 1.3.21, hold for the preradicals δm. In particular, δm is

a hereditary preradical for every m ∈ Z≥0.

60



Lemma 3.2.9. Let (B,Φ,v) be a RUSQ algebra. If M is in F (∆) then so is

M/δm (M), for any m ≥ 0.

Proof. By Proposition 3.2.7, the claim holds for m = 1. Suppose m ≥ 2. Then

M/δm (M) ∼= (M/δ (M)) / (δm−1 • δ (M) /δ (M))

= (M/δ (M)) / (δm−1 (M/δ (M))) ,

so by induction M/δm (M) belongs to F (∆).

Given a module M in F (∆), we may consider the filtration

0 ⊂ δ (M) ⊂ · · · ⊂ δm (M) = M, (3.5)

where m = l(δ,•) (M) is as defined in Lemma 1.3.19. The factors of this filtration are

∆-semisimple: by Lemma 3.2.9 and Proposition 3.2.7 the modules δi(M)/δi−1(M) =

δ(M/δi−1(M)) are ∆-semisimple. We call (3.5) the ∆-semisimple filtration of M ∈
F (∆).

Definition 3.2.10. The ∆-semisimple length of a module M in F (∆), denoted by

∆. sslM , is the length of the ∆-semisimple filtration of M , i.e. it is given by the

number l(δ,•) (M) (as in Lemma 1.3.19).

Lemma 3.2.11. Let (B,Φ,v) be a RUSQ algebra, and let M be in F (∆), with

∆. sslM = m ≥ 2. Suppose that 2 ≤ i ≤ m, and let π be a split epic mapping the

∆-semisimple module δi (M) /δi−1 (M) onto a summand ∆ (k, l). Then the epic

δi (M) /δi−2 (M) δi (M) /δi−1 (M) ∆ (k, l)π

does not split.

Proof. Denote the canonical epic δi (M) /δi−2 (M) −→ δi (M) /δi−1 (M) by $. Sup-

pose, by contradiction, that π ◦ $ splits. Then δi (M) /δi−2 (M) ∼= Ker(π ◦ $) ⊕
∆ (k, l). Note that Ker$ ⊆ Ker(π ◦ $), and that Ker$ ∼= δi−1 (M) /δi−2 (M).

As a consequence, there is a monic from Ker$ ⊕ ∆ (k, l) to δi (M) /δi−2 (M), so

Soc(δi−1 (M) /δi−2 (M))⊕ Lk,lk can be embedded in Soc(δi (M) /δi−2 (M)). It is easy

to check that δi−1 (M) /δi−2 (M) = δ(δi (M) /δi−2 (M)) (see Lemma 1.3.21). Therefore

Soc(δi (M) /δi−2 (M)) = Soc(δi−1 (M) /δi−2 (M)), which leads to a contradiction.

Results similar to Lemmas 3.2.9 and 3.2.11 often hold in more general situations in-

volving sequences of hereditary preradicals satisfying the conditions of Lemma 1.3.21.

The functors Soci(−), i ∈ Z≥0, are the classic example of such a sequence of preradi-

cals. For instructive purposes it is often useful to keep in mind this analogy between

the functors δi and Soci(−).
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3.2.3 ∆-semisimple filtrations of modules over the ADR al-
gebra

The ADR algebra of an Artin algebra A, R = (RA,Λ,�), is our prototype of a

RUSQ algebra. We now prove some results specific to the ∆-semisimple filtrations of

∆-good modules over the ADR algebra. Throughout this subsection the underlying

quasihereditary algebra will be (R,Λ,�), where the poset (Λ,�) is as defined in (2.2)

and (2.3). For the proof of the next results it is useful to remember that the left exact

functor HomA (G,−) is fully faithful.

Lemma 3.2.12. Let M1 and M2 be in modA, with M1 ⊆ M2. There is a canonical

embedding

HomA (G,M2) /HomA (G,M1) HomA (G,M2/M1)ι

and the induced morphisms

HomR (Pi,li ,HomA (G,M2) /HomA (G,M1)) HomR (Pi,li ,HomA (G,M2/M1))
ι∗ ,

HomR (HomA (G,M2/M1) , Qi,li) HomR (HomA (G,M2) /HomA (G,M1) , Qi,li)
ι∗

are isomorphisms.

Proof. The functor HomA (G,−) is left exact. Thus, it maps the canonical epic π :

M2 −→M2/M1 to the morphism π∗, which factors as

HomA (G,M2) HomA (G,M2/M1)

HomA (G,M2) /HomA (G,M1)

$

π∗

ι
.

Consider the monic ι∗ obtained by applying the functor HomR (Pi,li ,−) to ι. Let f∗

be in HomR (Pi,li ,HomA (G,M2/M1)). Then f∗ = HomA (G, f), for a map f : Pi −→
M2/M1 in modA. Since Pi is projective then f = π ◦ t for some t : Pi −→ M2. So

f∗ = π∗ ◦ t∗ = ι ◦ $ ◦ t∗ = ι∗($ ◦ t∗), where t∗ = HomA (G, t). This shows that

ι∗ is surjective, hence it is an isomorphism. The proof that ι∗ is an isomorphism is

analogous.

Let M1 and M2 be in modA, with M1 ⊆ M2. We shall regard the canonical

embedding in Lemma 3.2.12,

HomA (G,M2) /HomA (G,M1) HomA (G,M2/M1)ι ,
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as an inclusion of R-modules. According to Lemma 2.3.6, the module HomA (G,M)

lies in F (∆) for every M in modA. Since the category F (∆) is closed under sub-

modules then both HomA (G,M2) /HomA (G,M1) and HomA (G,M2/M1) are ∆-good

modules. Lemma 3.2.12 is hinting at a close relation between the ∆-filtrations of the

modules HomA (G,M2) /HomA (G,M1) and HomA (G,M2/M1). We spell out this

idea below.

Corollary 3.2.13. Let M1 and M2 be in modA, with M1 ⊆ M2. Write M =

HomA (G,M2/M1) and M ′ = HomA (G,M2) /HomA (G,M1). All the composition

factors of M of type Li,li appear as composition factors of its submodule M ′. In

particular, M and M ′ have the same number of composition factors of type Li,li.

Moreover, M and M ′ lie in F (∆), SocM = SocM ′, and the modules M and M ′ are

filtered by the same number of standard modules.

Proof. Fix 1 ≤ i ≤ n. By Lemma 3.2.12, all the composition factors of M isomorphic

to Li,li appear as composition factors of its submodule M ′. As M lies in F (∆)

then, by Proposition 2.5.6, SocM is a direct sum of simples of type Li,li . Thus

SocM ′ = SocM . Part 4 of Proposition 2.5.6 implies that the ∆-filtrations of M and

M ′ have the same number of factors.

As we shall see next, the socle series of an A-module M gives rise to the ∆-

semisimple filtration of HomA (G,M) in F (∆).

Lemma 3.2.14. Let M be in modA. Then

HomA (G, SocjM) = Tr

 ⊕
(k,l): l≤j

Pk,l,HomA (G,M)

 . (3.6)

Moreover, if SocjM/ Socj−1M =
⊕

θ∈Θ Lxθ , then

HomA (G, SocjM) /HomA (G, Socj−1M) =
⊕
θ∈Θ

∆ (xθ, j) .

Proof. By Lemma 2.3.3, HomA (G, SocjM) is generated by projectives Pk,l satisfying

l ≤ j. This proves one of the inclusions in (3.6). Consider now an arbitrary morphism

f∗ : Pk,l −→ HomA (G,M), with l ≤ j. Note that f∗ = HomA (G, f) for a certain

map f : Pk/Radl Pk −→M . Clearly, Im f ⊆ SocjM . But then

Im f∗ ⊆ HomA (G, Im f) ⊆ HomA (G, SocjM) .

As f∗ was chosen arbitrarily, the other inclusion follows. This proves identity (3.6).
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To prove the second claim in the statement of the lemma, set

M ′ := HomA (G, SocjM) /HomA (G, Socj−1M) ,

and assume that SocjM/ Socj−1M is isomorphic to
⊕

θ∈Θ Lxθ . Lemma 3.2.12 and

Corollary 3.2.13 imply that M ′ is contained in

HomA (G, SocjM/ Socj−1M) =
⊕
θ∈Θ

HomA (G,Lxθ) =
⊕
θ∈Θ

∆ (xθ, 1)

and that these modules have the same socle. By Corollary 3.2.3, M ′ is ∆-semisimple.

Finally, by the identity (3.6) (applied to j and j−1), the moduleM ′ must be generated

by projectives of type Pi,j. This proves the second assertion of the lemma.

Lemmas 3.2.14 and 3.2.15 are very useful to compute examples. For the proof

of the next result, recall the characterisation of the preradical δ in Subsection 3.2.2,

namely Proposition 3.2.7 and Lemma 3.2.9.

Lemma 3.2.15. Let M be in modA. The socle series of M induces the ∆-semisimple

filtration of HomA (G,M). Formally,

δm (HomA (G,M)) = HomA (G, SocmM) ,

for all m ∈ Z≥0. In particular, ∆. ssl(HomA (G,M)) = LL(M).

Proof. For m satisfying 1 ≤ m ≤ LL(M) we prove the claim by induction on m,

starting with m = 1. Note that HomA (G, SocM) is a direct sum of standard mod-

ules of type HomA (G,Li) = ∆ (i, 1), so HomA (G, SocM) ⊆ δ (HomA (G,M)). Since

the functor HomA (G,−) preserves injective hulls (see Lemma 2.4.4), the modules

HomA (G, SocM) and HomA (G,M) have the same socle. Hence the previous inclu-

sion must be an equality.

Suppose now that 2 ≤ m ≤ LL(M), and set

Z1 := HomA (G,M) /HomA (G, Socm−1M)

Z2 := HomA (G, SocmM) /HomA (G, Socm−1M) .

Since HomA (G,−) preserves injective hulls, the modules HomA (G,M/ Socm−1M)

and HomA (G, SocmM/ Socm−1M) have the same socle. But then, by Corollary

3.2.13, Z1 and Z2 have the same socle. Moreover, Z1 belongs to F (∆). By Lemma

3.2.14, Z2 must be contained in δ (Z1). So both δ (Z1) and Z2 are ∆-semisimple mod-

ules with the same socle. By Corollary 3.2.13, Z1/Z2 must be in F (∆). Since F (∆)
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is closed under submodules, then δ (Z1) /Z2 is in F (∆). We must have δ (Z1) /Z2 = 0,

otherwise this factor module would have some composition factor of type Li,li . By

induction, we may suppose that δm−1(HomA (G,M)) = HomA (G, Socm−1M). Then,

the identity Z2 = δ (Z1) translates to

HomA (G, SocmM) /δm−1 (HomA (G,M))

= δm (HomA (G,M)) /δm−1 (HomA (G,M)) .

This implies that δm (HomA (G,M)) = HomA (G, SocmM), 1 ≤ m ≤ LL(M). The

same identity holds trivially for m = 0 and for m ≥ LL(M).

3.3 Projective covers of modules over the ADR

algebra

We would like to determine the projective covers of modules over the ADR algebra RA

of A. For a module M in modA, the projective cover p∗ of HomA (G,M) in modRA is

the image of an epic p, with domain in addG, through the functor HomA (G,−). The

morphism p is a special kind of map: it is the right minimal addG-approximation of

M in modA.

The problem of finding approximations is hard in general. However, as we shall

see in Theorem A, it is very easy to compute right addG-approximations of rigid

modules.

Theorem A (or rather consequences of this result – Corollary 3.3.1 and Proposition

3.3.2) will play an important role in the proof of Theorem B, and it will also be very

useful when dealing with examples.

In Subsection 3.3.2, we will use Corollary 3.3.1 and Proposition 3.3.2 to give

a counterexample to a claim by Auslander, Platzeck and Todorov ([6]) about the

projective resolutions of modules over the ADR algebra.

3.3.1 Theorem A

Recall the definition of right X -approximation and of right minimal morphism, intro-

duced in Subsection 1.2.2. By Proposition 1.2.4, the right addG-approximations of a

module M in modA are in bijection with epics in modRA,

HomA (G,X) HomA (G,M) ,
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where X ∈ addG. This bijection restricts to a one-to-one correspondence between

right minimal addG-approximations in modA and projective covers in modR. Since

G is a generator, the functor HomA (G,−) is particularly well behaved: it is fully

faithful and it is such that the projective cover of a module M in modA factors

through its addG-approximation. The latter statement implies that every right

addG-approximation is an epimorphism.

Theorem A. Let M be a rigid module in modA such that LL(M) = m. The pro-

jective cover of M in mod(A/RadmA) is a right minimal addG-approximation of

M .

Proof. Let M be a rigid module with Loewy length m. Consider the projective cover

of M as an (A/RadmA)-module,

ε : P0 (M) −→M.

We want to prove that ε is a right minimal addG-approximation. By definition, ε is a

right minimal morphism, so it is enough to prove that every map f : Pi/Radj Pi −→
M , with (i, j) ∈ Λ, factors through ε. Note that this holds for j ≥ m, as ε is an epic

in mod(A/Radj A) and Pi/Radj Pi is a projective (A/Radj A)-module. So suppose

that j < m. Then

Im f ⊆ SocjM = Radm−jM,

using that M is rigid. Observe that both Radm−jM and Radm−j(P0 (M)) are an-

nihilated by Radj A, i.e. they lie in mod(A/Radj A). Now note that the functor

Radm−j (−) preserves epics. This can be seen directly, or can be deduced by looking

at Example 1.3.8 and Remark 1.3.10, recalling that the composition of cohereditary

preradicals is still a cohereditary preradical. Therefore we have the diagram

Pi/Radj Pi M

Im f

Radm−j(P0 (M)) Radm−jM.

f

∃ t

Radm−j ε

ιM
,

where the map t exists because Pi/Radj Pi is a projective in mod(A/Radj A). Thus

f = ιM ◦ (Radm−j ε) ◦ t = ε ◦ ιP0(M) ◦ t,

where ιP0(M) denotes the inclusion of Radm−j(P0 (M)) in P0 (M).
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As an immediate consequence of Theorem A, we get the following result.

Corollary 3.3.1. Let M be a rigid module in modA with LL(M) = m. Suppose

that ε is the projective cover of M in mod(A/RadmA). Then HomA (G, ε) is the

projective cover of HomA (G,M) in modRA.

The simple modules over the ADR algebra RA are “linked to each other” in a neat

way. When all projective indecomposable modules are rigid then the ‘glueing’ of the

simple modules (and of the standard modules) is even nicer.

Proposition 3.3.2. Let (i, j) and (k, l) be in Λ. Then Ext1
RA

(Li,j, Lk,l) 6= 0 implies

that either (k, l) = (i, j + 1) or l ≤ j − 1. If the A-module Pi/Radj Pi is rigid then

Ext1
RA

(Li,j, Lk,l) 6= 0 implies that either (k, l) = (i, j + 1) or l = j − 1. In particular,

the latter statement holds when all the projective indecomposable A-modules are rigid.

Proof. Recall that Ext1
RA

(Li,j, Lk,l) 6= 0 if and only if the simple module Lk,l is a

summand of RadPi,j/Rad2 Pi,j (see Proposition 1.2.3). The short exact sequence

(2.4) in Proposition 2.3.4 gives rise to the exact sequence

0 HomA

(
G,RadPi/Radj Pi

)
RadPi,j Rad ∆ (i, j) 0,

where Rad ∆ (i, j) = ∆ (i, j + 1). So if Lk,l is a summand of the top of RadPi,j then

either (k, l) = (i, j+1) or Lk,l is a summand of the top of HomA

(
G,RadPi/Radj Pi

)
.

In the latter case, we must have l ≤ j − 1 by Lemma 2.3.3.

If Pi/Radj Pi is rigid, then RadPi/Radj Pi is also rigid. In this case, Corollary

3.3.1 implies that the summands of the top of HomA

(
G,RadPi/Radj Pi

)
are of type

Lk,j−1.

Example 3.3.3. Consider the quiver

Q =

1

2 3 4

5 6

α
β

γ

ε η

and the path algebra A = KQ. Let M be the A-module P1/L6, that is, M has the

following structure

1

2 3 4

5

.
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Observe that LL(M) = LL(A) = 3, and that M is not a rigid module. Consider the

epic π : P1 −→M and note that the simple module L4 can be embedded in M . It is

not difficult to check that the epic[
π 1L4

]
: P1 ⊕ L4 −→M (3.7)

is a right minimal addG-approximation of M . This map is not a projective cover of

M . This shows that the claim of Corollary 3.3.1 does not usually hold for modules

which are not rigid.

Using the approximation (3.7), one easily sees that RA-module HomA (G,M) can

be represented as

(1, 3) (4, 1)

(2, 1) (3, 2) (4, 2)

(5, 1)

.

Remark 3.3.4. Notice that Example 3.3.3 illustrates the statement of Proposition

3.3.2. The quiver presentation of ADR algebra studied in Section 2.7 also confirms

Proposition 3.3.2 (note that the projective indecomposable modules over the algebra

A in Section 2.7 are rigid).

3.3.2 An application of Theorem A

Motivated in part by the theory of quasihereditary algebras, Auslander, Platzeck

and Todorov studied in [6] the homological properties of idempotent ideals. In this

paper the authors defined a new class of algebras – the Artin algebras satisfying the

descending Loewy length condition – and proved, in Theorem 7.3, [6], that every such

algebra is quasihereditary.

Definition 3.3.5 ([6, Section 7]). An Artin algebra B satisfies the descending Loewy

length condition (DLL condition, for short) if for every M in modB, a minimal

projective resolution

· · · Pi (M) · · · P0 (M) M 0ε

satisfies LL(Pi+1 (M)) < LL(Pi (M)), for all i ≥ 1 such that Pi (M) 6= 0.

In [6] the authors claim that the Artin algebras of global dimension 2, the ADR

algebras RA, and the l-hereditary algebras (introduced in [49]) all satisfy the DLL
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condition. The main purpose of Theorem 7.3 in [6] was thus to give a unified proof

of results in [20], [18] and [13], already established in the literature.

It is not difficult to check that Artin algebras of global dimension 2 and that l-

hereditary algebras do satisfy the DLL condition. Unfortunately, it is not true that

the ADR algebra RA satisfies the DLL condition for every choice of A.

In order to see this, consider the following example: define A := KQ/I, where K

is a field, Q is the quiver

Q =

1◦ 2◦ 3◦

4◦ 5◦

δ

α1

β1

α2

β2 γ1

γ2

and I is the admissible ideal

I = 〈α2α1, β1β2, β2α2 − α1β1, δβ1α1, γ1α2β2〉.

Since I is generated by monomial relations and by commutative relations between

paths of the same length, we may represent the projective indecomposable A-modules

as

1

4 2

1

,

2

1 3

4 2 5

4

,

3

2 5

3 4

, 4 ,
5

4
.

Note that the A-module L3 is in the socle of P3. Thus, using the labelling in-

troduced in Section 2.2, the RA-module P3,3 contains a copy of ∆ (3, 1). The mod-

ule ∆ (3, 1) has socle L3,3, so we may consider the corresponding quotient module

M := P3,3/L3,3.

Proposition 3.3.6. Let A be the algebra introduced previously and consider the cor-

responding ADR algebra RA. Let M be the RA-module defined above. The DLL

condition fails for the RA-module M . Indeed, we have

LL(P2 (M)) ≥ LL(P1 (M)).

Proof. As LL(P3) = 3, we have that RadP3,3 equals HomA (G,RadP3) (see Proposi-

tion 2.3.1). Since RadP3 is rigid, Corollary 3.3.1 implies that the minimal projective

presentation of L3,3 is of the form

P2,2 ⊕ P5,2 P3,3 L3,3 0.
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We claim that LL(P2,2) ≥ LL(P3,3). Note that this will imply the statement in the

proposition, as Pi+1 (M) = Pi (L3,3).

We start by showing that LL(P3,3) = 5. Observe that

LL(P3,3) = 1 + LL(RadP3,3)

= 1 + LL(HomA (G,RadP3))

= 1 + max{LL(HomA (G,M1)),LL(HomA (G,M2))},

where RadP3 = M1 ⊕M2,

M1 :=
2

3
, M2 :=

5

4
.

By Lemmas 3.2.14 and 3.2.15, the chain of inclusions

0 ⊂ HomA (G,L4) ⊂ HomA (G,M2)

is the ∆-semisimple filtration of HomA (G,M2), and it has factors ∆ (4, 1) = L4,1 and

∆ (5, 2) = L5,2, respectively. So HomA (G,M2) has Loewy length 2. Consider now the

module N1 := HomA (G,M1). We have that LL(N1) = 4 (we prove this in Lemma

3.3.8), therefore LL(P3,3) = 5. As we shall see in Lemma 3.3.9, LL(P2,2) ≥ 5. This

proves the result.

For the proof of Lemmas 3.3.8 and 3.3.9, it will be useful to understand the

extensions of the simple RA-module L2,4. This is addressed in the auxiliary remark

below.

Remark 3.3.7. Consider the projective indecomposable RA-module P2,4. According

to Lemmas 3.2.14 and 3.2.15, P2,4 has a ∆-semisimple filtration

0 ⊂ HomA (G, SocP2) ⊂ HomA (G, Soc2 P2) ⊂ HomA (G, Soc3 P2) ⊂ P2,4, (3.8)

whose factors (ordered from the top to the bottom) are

∆(2, 4) = L2,4,

∆(3, 3),

∆(1, 2)⊕∆(5, 2),

∆(4, 1)⊕∆(2, 1)⊕∆(4, 1).
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Using (3.8), it is not so easy to determine the precise elements (k, l) ∈ Λ for which

Ext1
RA

(L2,4, Lk,l) 6= 0. However, by looking at (3.8), we conclude that

(k, l) ∈ {(3, 3), (1, 2), (5, 2), (4, 1), (2, 1)}

in order for Ext1
RA

(L2,4, Lk,l) to be nonzero.

Lemma 3.3.8. Using the previous notation, let N1 = HomA (G,M1) be the RA-

module defined in the proof of Proposition 3.3.6. We have LL(N1) = 4.

Proof. By Lemmas 3.2.14 and 3.2.15, the module N1 has a ∆-semisimple filtration

0 ⊂ HomA (G,L3) ⊂ N1,

with factors ∆ (3, 1) and ∆ (2, 2). In particular, N1 has socle L3,3. Consider now the

pullback diagram

0 ∆ (3, 1) N ′2 L2,4 0

0 ∆ (3, 1) N1 ∆ (2, 2) 0

. (3.9)

There is a (unique) submodule N3 of N1 with TopN3 = L2,4. In fact, by looking at

the diagram above we see that N3 ⊆ N ′2, so

RadN3 ⊆ RadN ′2 ⊆ ∆ (3, 1) .

Using Remark 3.3.7 (and the structure of ∆(3, 1)), we conclude that RadN3 must

have top L3,3. That is, the module N3 has the following structure

N3 =
(2, 4)

(3, 3)

.

In particular, the summand L2,4 must appear in the socle of N1/ SocN1. Now note

that the exact sequence in the bottom of (3.9) induces the short exact sequence

0 ∆ (3, 1) /L3,3 N1/ SocN1 ∆ (2, 2) 0,

so we must have

Soc2N1/ SocN1 = L3,2 ⊕ L2,4.
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With this in mind, we may construct the first two rows of the commutative diagram

0 0 0

0 Soc2 ∆ (3, 1) Soc2N1 L2,4 0

0 ∆ (3, 1) N1 ∆ (2, 2) 0

0 L3,1 N1/ Soc2N1 ∆ (2, 2) /L2,4 0

0 0 0

. (3.10)

The exactness of the bottom row comes from the fact that the functor 1/ Soc2 (−)

preserves monics (see Lemma 1.3.9). We want to prove that LL(N1/ Soc2N1) = 2.

Looking at the bottow row of (3.10) we see that the Loewy length of N1/ Soc2N1 is

either 2 or 3. Note that LL(N1/ Soc2N1) = 3 if and only if Soc3N1/ Soc2N1 = L3,1.

If we had Soc3N1/ Soc2N1 = L3,1 then it would follow that Ext1
RA

(L2,3, L3,1) 6= 0,

which cannot happen because P2/Rad3 P2 is rigid (see Proposition 3.3.2). Hence

LL(N1/ Soc2N1) = 2. So LL(N1) = 4.

Lemma 3.3.9. Using the previous notation, the projective RA-module P2,2 satisfies

LL(P2,2) ≥ 5.

Proof. By Lemmas 3.2.14 and 3.2.15, the module P2,2 has a ∆-semisimple filtration

0 ⊂ ∆ (1, 1)⊕∆ (3, 1) ⊂ P2,2,

with top factor ∆ (2, 2). The factor module N ′1 := P2,2/∆ (3, 1) is indecomposable

with socle L1,3 (if it had socle L1,3 ⊕ L2,4 then, by Lemma 3.2.2, it would be a

decomposable ∆-semisimple module). We assert that N ′1/ SocN ′1 has simple socle

L1,2. Consider the pullback diagram

0 ∆ (1, 1) N ′2 L2,4 0

0 ∆ (1, 1) N ′1 ∆ (2, 2) 0

.
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As before, there is a (unique) submodule N3 of N ′1 with TopN3 = L2,4. Indeed, we

must have N3 ⊆ N ′2, and consequently

RadN3 ⊆ RadN ′2 ⊆ ∆ (1, 1) .

From Remark 3.3.7, we conclude that RadN3 has simple top L1,2. So N3 must have

the following structure

(2, 4)

(1, 2)

(1, 3)

.

Now it is not difficult to deduce that LL(N ′1) ≥ 5. Hence LL(P2,2) ≥ 5 (indeed this

is an equality).

By what we have just seen, the DLL condition does not hold for the ADR algebra

RA in general. However, the algebra RA actually satisfies a property very similar to

the DLL condition. The next results are implicitly proved in [5], within the proof of

Proposition 10.2. We prove them for completeness. In the next result, the generator

GA/Radm A of A/RadmA is as defined in (2.1).

Lemma 3.3.10. Let M be in modA. Suppose that LL(M) = m, and let ε : X −→M

be the right minimal addGA/Radm A-approximation of M . Then ε is the right minimal

addG-approximation of M and LL(Ker ε) < m = LL(X).

Proof. Let M be a module in modA satisfying LL(M) = m, and let

ε : X −→M

be the right minimal addGA/Radm A-approximation of M . Let f : X ′ −→ M be a

map such that X ′ ∈ addG. Note that LL(Im f) ≤ m, so the epic X ′ −→ Im f

factors through the largest factor module of X ′ with Loewy length not greater than

m. In other words, the map f must factor through X ′/RadmX ′, and this module

lies in addGA/Radm A. Since ε is a right addGA/Radm A-approximation, it follows that

f factors through ε. Thus, the map ε is a right minimal addG-approximation of M .

We now check that LL(Ker ε) < m. Note that LL(X) = m and LL(Ker ε) ≤ m.

Let X = X ′ ⊕ X ′′ be a decomposition of X such that X ′′ is the direct sum of all

indecomposable summands of X with Loewy length m. Let Y be an indecomposable

summand of X ′′ and consider the map

Ker ε X Yπ , (3.11)
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where π is the projection map. The map (3.11) cannot be epic, otherwise it would

split and ε would not be a right minimal morphism. Hence the image of the morphism

(3.11) is contained in RadY . Thus Ker ε ⊆ X ′ ⊕ RadX ′′. Therefore LL(Ker ε) <

m.

Proposition 3.3.11. For every N in modRA there is an exact sequence of A-modules

0 Xt · · · X2 X1 X0 ,

with Xi in addG satisfying LL(Xi+1) < LL(Xi) for all i ≥ 1, such that

0 HomA (G,Xt) · · · HomA (G,X0) N 0ε

is a minimal projective resolution for N .

Proof. Recall that the projective cover of an RA-module HomA (G,M), M ∈ modA,

is the image of the right minimal addG-approximation of M ′ in modA through the

functor HomA (G,−).

Step 1 Using Lemma 3.3.10 inductively we conclude that there is an exact sequence

in modA

0 Xt · · · X1 X0 M 0 ,

with Xi in addG satisfying LL(M) = LL(X0) and LL(Xi+1) < LL(Xi) for all i, whose

image through HomA (G,−) is the minimal projective resolution of HomA (G,M) in

modRA.

Step 2 Consider now a module N in modRA, and let

P1 (N) P0 (N) N 0.
p1∗

be its minimal projective presentation. The map p1∗ is the image of a map p1 in

modA with domain (and codomain) in addG. Suppose p1 is nonzero with domain

X. By the same reasoning as before we conclude that LL(Ker p1) < LL(X) (note

that the map p1 must be right minimal). Now note that HomA (G,Ker p1) = Ker p1∗,

so Pi (HomA (G,Ker p1)) = Pi+2 (N). The statement of the proposition follows by

applying the conclusions of Step 1 to the module Ker p1.

Auslander proved in [5, Theorem 10.3] that the ADR algebra RA has always finite

global dimension not greater than LL(A). This result also follows from Proposition

3.3.11.

Corollary 3.3.12. The algebra RA is such that gl. dimRA ≤ LL(A).
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3.4 Theorem B

The goal of this section is to prove Theorem B stated in the beginning of this chapter.

In order to attain this, we investigate in detail the ∆-filtrations of the tilting modules

over the ADR algebra RA.

3.4.1 Motivation

Given an Artin algebra A, define

C = CA :=
n⊕
i=1

LL(Qi)⊕
j=1

Socj Qi.

This is a cogenerator of modA. Set SA := EndA (C) op. It turns out that the algebras

SA and R (RA) have a very similar structure. In fact, the statement of Theorem B

can be loosely rephrased as: the algebras SA and R (RA) are isomorphic provided

that A is “nice enough”. Before delving into the technical results necessary to prove

Theorem B, we will try to illustrate (informally) why the algebras SA and R (RA)

should be related.

The algebra R (RA) is quasihereditary with respect to (Λ,�op), where (Λ,�) is

the poset associated with the algebra RA described in (2.2) and (2.3). Recall the

results in Section 2.6 concerning the Ringel dual of (right) ultra strongly quasiheredi-

tary algebras. According to these, (R (RA) ,Λ,�op) is a LUSQ algebra (see Theorem

2.6.1).

Turning the attention to the algebra SA, we have that

SA = EndA

 n⊕
i=1

LL(Qi)⊕
j=1

Socj Qi

 op

= EndA

D
 n⊕

i=1

LL(Qi)⊕
j=1

PAop

i /Radj PAop

i

 op

∼= EndAop (GAop) = (RAop)
op,

where D is the standard duality and PAop

i denotes the projective indecomposable

Aop-module D (Qi). To avoid ambiguity, denote the poset corresponding to the ADR

algebra RAop of Aop by (ΛAop ,EAop) and represent its elements by [i, j]. Note that SA

is quasihereditary, as RAop is. To be precise, (SA,ΛAop ,EAop) is a LUSQ algebra since

(RAop ,ΛAop ,EAop) is RUSQ.
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So both (R (RA) ,Λ,�op) and (SA,ΛAop ,EAop) are LUSQ algebras. We take this

analogy further by comparing the posets

(Λ,E op) , Λ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ li = LL(Pi)},

(ΛAop ,EAop) , ΛAop = {[i, j] : 1 ≤ i ≤ n, 1 ≤ j ≤ LL(PAop

i ) = LL(Qi)}.

For the algebras R (RA) and SA to be isomorphic they must have the same number

of simple modules, i.e. the sets Λ and ΛAop must have the same cardinality. It seems

then reasonable to require that LL(Pi) = LL(Qi), for all 1 ≤ i ≤ n.

Ideally, an isomorphism between R (RA) and SA would somehow preserve the

orders E op and EAop of Λ and ΛAop , respectively. As R (RA) and SA are LUSQ

algebras, they both have uniserial costandard modules. The costandard R (RA)-

module with label (i, j), ∇′(i, j), has the following structure

(i, 1)

(i, 2)

...

(i, j)

(see Theorem 2.6.1). The costandard SA-module with label [i, j], ∇SA [i, j], is isomor-

phic to D(∆Aop [i, j]), where ∆Aop [i, j] is the standard RAop-module with label [i, j].

Thus the submodule lattice of ∇SA [i, j] is ‘dual’ to the submodule lattice of ∆Aop [i, j].

That is, ∇SA [i, j] has the following structure

[i,LL(Qi)]

[i,LL(Qi)− 1]

...

[i, j]

.

If we suppose that LL(Pi) = LL(Qi) = li for all i, then the modules ∇′[i, j] and

∇SA(i, li − j + 1) have the same length for every 1 ≤ i ≤ n, 1 ≤ j ≤ li. The stronger

assumption that LL(Pi) = LL(Qi) = L for all i, actually implies that the bijection

[i, j] 7−→ (i, L− j + 1) preserves the partial orders. In this case, we have

[i, j] �Aop [k, l]⇔ j > l

⇔ L− j + 1 < L− l + 1

⇔ (i, L− j + 1) � (k, L− l + 1)⇔ (i, L− j + 1) � op(k, L− l + 1).
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These observations support the assumptions and the claim of Theorem B.

Theorem B. Suppose that A satisfies LL(Pi) = LL(Qi) = L for all i, 1 ≤ 1 ≤ n.

Moreover, suppose that all projectives Pi and all injectives Qi are rigid. Then

R (RA) ∼= SA ∼= (RAop)
op.

The rest of this chapter is mainly concerned with the proof of Theorem B. We

refer to Appendix A for a complete example which illustrates the claim of Theorem

B, and the preliminary results contained in Subsection 3.4.2.

3.4.2 Preliminary results

Roughly speaking, the quasihereditary structure of the algebra SA depends on the

socle series of the injective indecomposable A-modules, whereas the structure of the

algebra R (RA) depends on the filtrations

0 ⊂ T (i, li) ⊂ · · · ⊂ T (i, j) ⊂ · · · ⊂ T (i, 1) = Qi,li .

The next results explore the connections between these two filtrations. These results

will be needed for the proof of Theorem B.

Lemma 3.4.1. Let A be such that LL(Pi) = L for all i, 1 ≤ i ≤ n. Then

T (k, L) = Lk,L = ∆ (k, L) ,

for 1 ≤ k ≤ n.

Proof. The composition factor Lk,l has multiplicity one in both ∆ (k, l) and T (k, l),

and the composition factors of these two modules are of the form Li,j, with (i, j) �

(k, l). The lemma follows from the fact that (k, L) is a minimal element in (Λ,�).

Proposition 3.4.2. Let A be such that LL(Pi) = L for all i, 1 ≤ i ≤ n. Then, for

every (k, l) in Λ, we have

T (k, l) ⊆ HomA (G, SocL−l+1Qk) = δL−l+1 (Qk,L) = δL−l+1 (T (k, 1)) .

Proof. Recall that T (k, 1) = Qk,L = HomA (G,Qk) (see Lemma 2.4.4). Lemma 3.2.15

implies that

HomA (G, SocL−l+1Qk) = δL−l+1 (Qk,L) = δL−l+1 (T (k, 1)) .
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From Proposition 2.5.8, it follows that T (k, l) ⊆ T (k, 1). Hence, according to Lemma

1.3.21, it is enough to show that ∆. sslT (k, l) ≤ L − l + 1 in order to establish the

statement in the proposition (recall that l(δ,•)(−) corresponds to ∆. ssl(−) in the

present context).

Lemma 3.4.1 implies that T (k, L) = ∆ (k, L). So ∆. sslT (k, L) = 1. We prove

that ∆. sslT (k, l) ≤ L− l + 1 by descending induction on l.

Assume that ∆. sslT (x, l + 1) ≤ L − l, for every x, and consider the short exact

sequence

0 ∆ (k, l) T (k, l) X (k, l) 0
φ

.

Recall that X (k, l) lies in F (∆) and all its composition factors are of the form Lx,y

with y ≥ l + 1. Let ⊕
i∈I

Qxi,L := Q0

be the injective hull of X (k, l) (see part 5 of Proposition 2.5.6). Then X (k, l) is

contained in the largest submodule of Q0 all of whose composition factors are of the

form Lx,y, with y ≥ l + 1, i.e. we have

X (k, l) ⊆ Rej

Q0,
⊕

(x,y): y<l+1

Qx,y

 =
⊕
i∈I

Rej

Qxi,L,
⊕

(x,y): (x,y)�(xi,l+1)

Qx,y


=
⊕
i∈I

T (xi, l + 1) ,

where the last equality follows from Lemma 2.5.10. By induction and by part 1 of

Lemma 1.3.21, we have that ∆. sslX (k, l) ≤ L − l. Note that ∆ (k, l) = δ (T (k, l)).

Lemma 1.3.19 implies that ∆. sslT (k, l) ≤ L− l + 1.

By Proposition 3.4.2, if all the projectives in modA have the same Loewy length,

then T (k, l) is a submodule of δL−l+1 (Qk,l) for every (k, l) in Λ. If additionally all

projectives Pi are rigid, then a ∆-filtration of T (k, l) has the same number of factors

as a ∆-filtration of δL−l+1 (Qk,L).

Proposition 3.4.3. Suppose that A satisfies LL(Pi) = L for all i, 1 ≤ i ≤ n. Assume

that the projectives Pi are rigid. Then the monic

HomRA (Pi,L, T (k, l)) HomRA (Pi,L, δL−l+1 (Qk,L))

induced by the inclusion

T (k, l) ⊆ δL−l+1 (Qk,L) = δL−l+1 (T (k, 1)) = HomA (G, SocL−l+1Qk)
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is an isomorphism. In particular, the modules T (k, l) and δL−l+1 (Qk,L) are filtered

by the same number of standard modules.

Proof. Recall the statement of Proposition 3.4.2 and consider an arbitrary map

f∗ : Pi,L −→ δL−l+1 (Qk,L) .

We claim that Im f∗ ⊆ T (k, l) – note that once we prove this, the statement in the

proposition follows. Our claim holds for l = L, as

δ1 (Qk,L) = δ (T (k, 1)) = ∆ (k, 1) ,

and T (k, L) = Lk,L (see Lemma 3.4.1). For the general case, by Lemma 2.5.10, we

must show that all composition factors of Im f∗ are of the form Lx,y, with (x, y) 7
(k, l), that is, with y ≥ l. So assume that Im f∗ 6= 0 and let

t : Px,y −→ Im f∗

be a nonzero map. We have the following commutative diagram

Px,y

Im f∗

Pi,L δL−l+1 (Qk,L)

t

∃ s∗

v
u

f∗

,

where the map s∗ exists because Px,y is projective. We must have f∗ ◦ s∗ 6= 0. As

HomA (G,−) is a fully faithful functor, there is a nonzero map in modA

Px/Rady Px Pi SocL−l+1 Qk
s f

,

such that the functor HomA (G,−) takes f and s to f∗ and s∗, respectively. Note that

LL(Im f) ≤ L− l + 1, so RadL−l+1 Pi ⊆ Ker f . Since Pi is rigid, then RadL−l+1 Pi =

Socl−1 Pi. Now Im s is a submodule of Pi with Loewy length at most y, so Im s ⊆
Socy Pi. Since f ◦ s 6= 0, we must have y ≥ l. That is, (k, l) 6C (x, y). By a previous

observation, Im f∗ has to be contained in T (k, l), and this finishes the proof.

By combining Propositions 3.4.2 and 3.4.3 it is possible to compute the ∆-semi-

simple length of all tilting modules T (k, l).
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Lemma 3.4.4. Suppose that A satisfies LL(Pi) = L for all i, 1 ≤ i ≤ n, and assume

that the projectives are rigid. Then

∆. sslT (k, l) = min{L− l + 1,LL(Qk)},

for (k, l) ∈ Λ. In particular, if LL(Qi) = L for all i, then ∆. sslT (k, l) = L − l + 1

for all (k, l) ∈ Λ.

Proof. For a module N in F (∆), denote the number of factors in a ∆-filtration of N

by |∆|(N). Set α = min{L− l + 1,LL(Qk)}.
By Proposition 3.4.2 and part 2 of Lemma 1.3.21 we have ∆. sslT (k, l) ≤ L−l+1.

Since T (k, l) ⊆ T (k, 1) = HomA (G,Qk), then ∆. sslT (k, l) ≤ ∆. ssl(HomA (G,Qk)),

by part 1 of Lemma 1.3.21. Lemma 3.2.15 implies that ∆. ssl(HomA (G,Qk)) =

LL(Qk). So ∆. sslT (k, l) ≤ α.

Suppose, by contradiction, that ∆. sslT (k, l) ≤ α− 1. Then

T (k, l) ⊆ δα−1 (T (k, 1)) = δα−1 (Qk,L) ,

by part 3 of Lemma 1.3.21. In particular, |∆|(T (k, l)) ≤ |∆|(δα−1 (Qk,L)) (as |∆|(N)

coincides with the number of composition factors of N ∈ F (∆) of type Li,L). By

Lemma 3.2.15 we have

δα (Qk,L) /δα−1 (Qk,L) = HomA (G, SocαQk) /HomA (G, Socα−1Qk) ,

and this a nonzero ∆-semisimple module as α ≤ LL(Qk) = ∆. sslQk,L. So

|∆|(T (k, l)) ≤ |∆|(δα−1 (Qk,L)) < |∆|(δα (Qk,L)) ≤ |∆|(δL−l+1 (Qk,L)),

where the last inequality follows from the inclusion δα (Qk,L) ⊆ δL−l+1 (Qk,L). This

contradicts Proposition 3.4.3. Hence ∆. sslT (k, l) = α.

We now go one step further and fully describe the ∆-semisimple filtration of T (k, l)

in terms of the socle series of Qk, in the case when all the projectives in modA are

rigid and have the same Loewy length.

Theorem 3.4.5. Suppose that A satisfies LL(Pi) = L for all i, 1 ≤ i ≤ n, and

assume that the projectives are rigid. Let (k, l) ∈ Λ, and suppose that the socle layers

of Qk are

SociQk/ Soci−1Qk
∼=
⊕
ω∈Ωki

Lxω ,
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for i = 1, . . . ,LL(Qk). Then

δi (T (k, l)) /δi−1 (T (k, l)) ∼=
⊕
ω∈Ωki

∆ (xω, l + i− 1) ,

for i = 1, . . . ,∆. sslT (k, l).

Remark 3.4.6. As SocQk = Lk, then |Ωk
1| = 1 and xω = k for ω ∈ Ωk

1.

Proof of Theorem 3.4.5. We prove the statement of the proposition by induction on

i. Fix l, 1 ≤ l ≤ L. Note that δ1 (T (k, l)) = ∆ (k, l), thus the claim holds trivially for

i = 1 (see Remark 3.4.6). So let i be such that 2 ≤ i ≤ ∆. sslT (k, l), and consider

the short exact sequence

0 Zi−1 δi (T (k, l)) /δi−2 (T (k, l)) Zi 0,ι

where

Zj := δj (T (k, l)) /δj−1 (T (k, l))

for 1 ≤ j ≤ ∆. sslT (k, l). Suppose, by induction, that

Zj =
⊕
ω∈Ωkj

∆ (xω, l + j − 1) (3.12)

for 1 ≤ j ≤ i− 1. We wish to describe Zi.

Step 1 We claim that the indecomposable summands of the ∆-semisimple module

Zi are all of the form ∆ (x, y), with y ≥ l+ i− 1. Suppose, by contradiction, that Zi

has a summand ∆ (x, y), with y ≤ l + i− 2. Let g : ∆ (x, y) −→ Zi be a split monic,

and let ν be such that ν ◦ g = 1∆(x,y). We then have the following pullback diagram

0
⊕

ω∈Ωki−1
∆ (xω, l + i− 2) N ∆ (x, y) 0

0 Zi−1 δi (T (k, l)) /δi−2 (T (k, l)) Zi 0.

g′

f

g

ι coker ι

.

Note that (x, y) 6C (xω, l+ i− 2) for every ω in Ωk
i−1. By Lemma 1.4.5, there is a split

monic µ such that f ◦ µ = 1∆(x,y). So

ν ◦ (coker ι) ◦ g′ ◦ µ = ν ◦ g ◦ f ◦ µ = 1∆(x,y),

that is, ν ◦ (coker ι) is a split epic. This contradicts Lemma 3.2.11. Therefore, the

summands of Zi are all of the form ∆ (x, y), with y ≥ l + i− 1.

81



Step 2 We may suppose that l ≥ 2 as, by Lemmas 3.2.14 and 3.2.15, the result

holds for T (k, 1) = HomA (G,Qk). Consider the family of commutative diagrams

0 0 0

0 δj−1 (T (k, l)) δj (T (k, l)) Zj 0

0 δj−1 (T (k, 1)) δj (T (k, 1))
⊕

ω∈Ωkj
∆ (xω, j) 0

0 Wj−1 Wj Coker s
(j)
3 0

0 0 0

s
(j)
1 s

(j)
2 s

(j)
3

, (3.13)

for j = 2, . . . , i. Here s
(j)
1 = δj−1(s

(j)
2 ), and the map s

(j)
2 is obtained by applying δj to

the inclusion of T (k, l) in T (k, 1). The morphism s
(j)
3 is a monic because the functor

1/δj−1 preserves monics (recall that δj−1 is a hereditary preradical and use Lemma

1.3.9).

Let j = i in (3.13). We claim that Wi has no composition factors of type Lx,L.

As i ≤ ∆. sslT (k, l), then i ≤ L− l + 1 by Lemma 3.4.4. So l ≤ L− i+ 1. Thus

T (k, L− i+ 1) ⊆ T (k, l) ⊆ T (k, 1) .

Now, by Lemma 3.4.4, ∆. sslT (k, L− i+ 1) ≤ i, hence

T (k, L− i+ 1) ⊆ δi (T (k, l)) ⊆ δi (T (k, 1)) = HomA (G, SociQk) .

Proposition 3.4.3 implies that T (k, L− i+ 1) and HomA (G, SociQk) have the same

number of composition factors of type Lx,L. By the chain of inclusions above, Wi

and consequently Coker s
(i)
3 have no composition factors of type Lx,L. So the ∆-

semisimple module Zi has the same socle as
⊕

ω∈Ωkj
∆ (xω, j). This fact, together

with the conclusion of Step 1, implies that

Zi =
⊕
ω∈Ωki

∆ (xω, yω) , (3.14)

with L ≥ yω ≥ l + i− 1.
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Step 3 Recall that i is such that 2 ≤ i ≤ ∆. sslT (k, l) ≤ L − l + 1 (see Lemma

3.4.4 for the last inequality).

We wish to prove that yω = l + i − 1 for every ω ∈ Ωk
i in the identity (3.14).

Note that the identity must hold in the case i = L − l + 1. So we may assume that

i ≤ L− l, i.e. that l + i ≤ L.

Suppose, by contradiction, that yω′ ≥ l + i for some ω′ ∈ Ωk
i . Consider again the

diagram (3.13) for j = i. There is some element ω′ in Ωk
i satisfying yω′ ≥ l + i, and

such that the composition factor Lxω′ ,yω′−1 appears in the socle of Coker s
(i)
3 . The

simple module Lxω′ ,yω′−1 is then a composition factor of Wi as well.

We have that s
(i)
2 = δi (κ), where κ is the inclusion of T (k, l) on T (k, 1). The

functor δi is left exact by Lemma 1.3.9, so

Wi ⊆ δi (T (k, 1) /T (k, l)) = δi (Qk,l−1) ⊆ Qk,l−1,

and Wi 6= 0 (because Wi−1 6= 0 by induction). Since yω′ > l+i−1 ≥ l, the composition

factor Lxω′ ,yω′−1 cannot be in the socle of Wi. Thus, some composition factor of

RadPxω′ ,yω′−1/Rad2 Pxω′ ,yω′−1,

say Lα,β, appears in the composition series of Wi. In fact, as Lxω′ ,yω′−1 is in the socle

of Coker s
(i)
3 , then Lα,β has to be a composition factor of Wi−1. Proposition 3.3.2

implies that either (α, β) = (xω′ , yω′) or (α, β) = (x, yω′ − 2), for some x. In both

cases, we have

β ≥ yω′ − 2 ≥ l + i− 2.

Step 4 Consider now the commutative diagrams (3.13) for j = 2, . . . , i − 1. By

induction, one knows how the modules Zj look like for 2 ≤ j ≤ i − 1 (see (3.12)).

Thus, for 2 ≤ j ≤ i− 1, the composition factors of Coker s
(j)
3 are Lxω ,j, . . . , Lxω ,l+j−2,

ω ∈ Ωk
j . Moreover, W1 = ∆ (k, 1) /∆ (k, l). Hence all composition factors of Wi−1 are

of the form Lx,y, with y ≤ l+ i− 3. But then Lα,β cannot be a composition factor of

Wi−1 – a contradiction. Therefore, the assumption made in the beginning of Step 3

is wrong and we must have yω = l + i− 1 for every ω in Ωk
i .

3.4.3 Proof of Theorem B

We finally prove the main result of this chapter.
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Theorem B. Suppose that A satisfies LL(Pi) = LL(Qi) = L for all i, 1 ≤ i ≤ n.

Moreover, suppose that all projectives Pi and all injectives Qi are rigid. Then

R (RA) ∼= SA ∼= (RAop)
op.

The proof presented in here follows a suggestion by K. Erdmann, and replaces our

previous (much less elegant) method to establish this result. The two key ingredients

for the proof of Theorem B (Propositions 3.4.7 and 3.4.9) rely on the description of

the ∆-semisimple filtration of the tilting modules given in Theorem 3.4.5.

Recall that the underlying algebra A is an Artin C-algebra. Therefore the ADR

algebra RA is also an Artin C-algebra, and HomRA (X, Y ) lies in modC for X and Y

in modRA.

Proposition 3.4.7. Suppose that A satisfies LL(Pi) = LL(Qi) = L for all i, 1 ≤
i ≤ n, and assume that all projectives Pi and all injectives Qi are rigid. Then the

C-modules HomRA(T (k, l), T (i, j)) and HomRA(δL−l+1(Qk,L), δL−j+1(Qi,L)) have the

same (Jordan–Hölder) length.

Proof. Denote the length of a module M in modC by l(M). We will use the nota-

tion in the statement of Theorem 3.4.5 to describe the socle layers of the injective

indecomposable module Qk.

We start by determining the value of l(HomRA(T (k, l), T (i, j))). Using that the

functor HomRA (−, T (i, j)) preserves exact sequences in F (∆) (see Remark 1.4.16)

together with Theorem 3.4.5, we deduce that

l (HomRA (T (k, l) , T (i, j))) =

∆.sslT (k,l)∑
y=1

∑
ω∈Ωky

l (HomRA (∆ (xω, l + y − 1) , T (i, j)))

Lemma 3.4.4 implies that ∆. sslT (k, l) = L − l + 1. By Theorem 2.5.8, the module

T (i, j) is filtered by the costandard modules ∇ (i, j) ,∇ (i, j + 1) , . . . ,∇ (i, L). Using

again that Ext1
RA

(F(∆),F(∇)) = 0 (see Lemma 1.4.8), we get

L−l+1∑
y=1

∑
ω∈Ωky

l (HomRA (∆ (xω, l + y − 1) , T (i, j)))

=
L−l+1∑
y=1

∑
ω∈Ωky

L∑
z=j

l (HomRA (∆ (xω, l + y − 1) ,∇ (i, z))) .
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Note that

L−l+1∑
y=1

∑
ω∈Ωky

L∑
z=j

l (HomRA (∆ (xω, l + y − 1) ,∇ (i, z)))

=
L−l+1∑
y=1

∑
ω∈Ωky

L∑
z=j

δ(xω ,l+y−1),(i,z)l (EndRA (∆ (xω, l + y − 1)))

=
L−l+1∑
y=1

∑
ω∈Ωky

L∑
z=j

δ(xω ,l+y−1),(i,z)l (EndA (Lxω))

=
L−l+1∑

y=max{j−l,0}+1

∑
ω∈Ωky

δxω ,il (EndA (Lxω)) .

In here the first equality follows from Lemma 1.4.11, the second equality will follow

from Lemma 3.4.8, and the third equality follows by analysing the values taken by

the Kronecker delta.

Now we calculate l(HomRA(δL−l+1(Qk,L), δL−j+1(Qi,L))). Observe that

HomRA (δL−l+1 (Qk,L) , δL−j+1 (Qi,L))

= HomRA (HomA (G, SocL−l+1Qk) ,HomA (G, SocL−j+1Qi))

∼= HomA (SocL−l+1Qk, SocL−j+1Qi) ,

where the first equality follows from Proposition 3.4.2 and the second identity is due

to the fact that HomA (G,−) is a fully faithful functor. Any map f : SocL−l+1Qk −→
SocL−j+1Qi is such that LL(Im f) ≤ L− j + 1, so f must factor through the largest

quotient of SocL−l+1Qk whose Loewy length is at most L− j + 1. That is, f factors

through the module

SocL−l+1 Qk/RadL−j+1 (SocL−l+1 Qk) = SocL−l+1Qk/ Socmax{L−l+1−(L−j+1),0}Qk,

where the equality follows from the rigidity of Qk. So the canonical epic

SocL−l+1Qk −→ SocL−l+1Qk/ Socmax{j−l,0}Qk

induces an isomorphism of C-modules

HomA

(
SocL−l+1 Qk/ Socmax{j−l,0}Qk, SocL−j+1Qi

)
∼= HomA (SocL−l+1Qk, SocL−j+1Qi) .

Notice that both SocL−l+1Qk/ Socmax{j−l,0}Qk and SocL−j+1Qi are modules over

A/RadL−j+1A. In fact, SocL−j+1Qi is an injective in mod(A/RadL−j+1A). Thus the
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restriction of HomA (−, SocL−j+1Qi) to mod(A/RadL−j+1A) yields an exact functor.

Therefore

l (HomRA (δL−l+1 (Qk,L) , δL−j+1 (Qi,L)))

= l
(
HomA

(
SocL−l+1Qk/ Socmax{j−l,0}Qk, SocL−j+1 Qi

))
=

L−l+1∑
y=max{j−l,0}+1

∑
ω∈Ωky

l (HomA (Lxω , SocL−j+1Qi))

=
L−l+1∑

y=max{j−l,0}+1

∑
ω∈Ωky

l (HomA (Lxω , Li))

=
L−l+1∑

y=max{j−l,0}+1

∑
ω∈Ωky

δxω ,il (EndA (Lxω)) ,

which shows that HomRA(δL−l+1(Qk,L), δL−j+1(Qi,L)) and HomRA(T (k, l), T (i, j)) have

the same length over C.

Lemma 3.4.8. Let (B,Φ,v) be a RUSQ algebra (over C). Then

EndB (∆ (i, j + 1)) ∼= HomB (∆ (i, j + 1) ,∆ (i, j)) ∼= EndB (∆ (i, j))

as C-modules. If B is the ADR algebra RA of an Artin algebra A then the modules

above are isomorphic to EndA (Li).

Proof. Consider the short exact sequence in modB

0 ∆ (i, j + 1) ∆ (i, j) Li,j 0.

By applying the functor HomB (∆ (i, j + 1) ,−) to this exact sequence we deduce that

EndB (∆ (i, j + 1)) ∼= HomB (∆ (i, j + 1) ,∆ (i, j)). Using HomB (−,∆ (i, j)), we get

an exact sequence

0 EndB (∆ (i, j)) HomB (∆ (i, j + 1) ,∆ (i, j)) Ext1
B (Li,j,∆ (i, j)) .

Note that Ext1
B (Li,j,∆ (i, j)) = 0. If this was not the case, there would exist a module

M with socle Li,li , having a unique composition factor of type Lx,lx and satisfying

[M : Li,j] = 2. According to parts 4 and 5 of Proposition 2.5.6, M would have to

be a standard module. This cannot happen as [M : Li,j] = 2. This shows that the

C-modules EndB (∆ (i, j)) and HomB (∆ (i, j + 1) ,∆ (i, j)) are isomorphic.

For the claim about RA, recall that ∆ (i, 1) = HomA (G,Li) (see Proposition

2.3.4). Since the functor HomA (G,−) is fully faithful, then EndRA (∆ (i, 1)) ∼=
EndA (Li).
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By Proposition 3.4.2, the RA-module T (k, l) is contained in δL−l+1 (Qk,L). We

will show that the maps in HomRA (δL−l+1 (Qk,L) , δL−j+1 (Qi,L)) give rise to maps

in HomRA (T (k, l) , T (i, j)) via restriction. This is the final piece needed to prove

Theorem B.

Proposition 3.4.9. Suppose that A satisfies LL(Pi) = LL(Qi) = L for all i, 1 ≤
i ≤ n, and assume that all projectives Pi and all injectives Qi are rigid. Consider a

morphism

f∗ : δL−l+1 (Qk,L) −→ δL−j+1 (Qi,L) .

Then f∗(T (k, l)) ⊆ T (i, j).

Proof. Because HomA (G,−) is a full functor, then f∗ = HomA (G, f) for a map

f : SocL−l+1Qk −→ SocL−j+1Qi in modA. Note that

Ker f ⊇ RadL−j+1 (SocL−l+1Qk) = Socmax{j−l,0}Qk.

Since T (k, l) ⊆ δL−l+1 (Qk,L), then

δmax{j−l,0} (T (k, l)) ⊆ δmax{j−l,0} (δL−l+1 (Qk,L)) = δmax{j−l,0} (Qk,L) .

Observe that,

δmax{j−l,0} (Qk,L) = HomA

(
G, Socmax{j−l,0}Qk

)
⊆ HomA (G,Ker f) = Ker f∗,

so δmax{j−l,0}(T (k, l)) is contained in the kernel of f∗|T (k,l). In other words, f∗(T (k, l))

is isomorphic to a quotient of N = T (k, l)/δmax{j−l,0}(T (k, l)). Theorem 3.4.5 implies

that all composition factors of N are of the form Lx,y, with y ≥ l+ max{j− l, 0} ≥ j.

Therefore all composition factors of f∗ (T (k, l)) are of the form Lx,y, with (x, y) 6B
(i, j). By Lemma 2.5.10, the module f∗ (T (k, l)) must be contained in T (i, j).

Proof of Theorem B. Consider the morphism of Artin C-algebras

ϕ : EndRA

 ⊕
(i,j)∈Λ

δj (Qi,L)

 −→ EndRA

 ⊕
(i,j)∈Λ

T (i, j)

 = R (RA) op,

which sends each map g ∈ EndRA(
⊕n

i=1

⊕L
j=1 δL−j+1(Qi,L)) to the corresponding

restriction to
⊕n

i=1

⊕L
j=1 T (i, j). According to Proposition 3.4.9, ϕ is well defined.

Moreover, if g 6= 0 then ϕ(g) 6= 0, as the modules δL−j+1(Qi,L) have simple socle.

So ϕ is an injective morphism of C-algebras, and in particular, a monomorphism of

modules in modC. Proposition 3.4.7 implies that ϕ is a bijection.
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As δj(Qi,L) = HomA(G, Socj Qi), then

EndRA

 ⊕
(i,j)∈Λ

δj (Qi,L)

 ∼= EndA

(
n⊕
i=1

L⊕
j=1

Socj Qi

)
= (SA)op,

using that HomA (G,−) is a fully faithful functor. Thus the algebras R(RA) and SA

are isomorphic. The identity SA ∼= (RAop)
op was established in Subsection 3.4.1.

Remark 3.4.10. Let A be an Artin algebra satisfying A ∼= Aop. Suppose further that

A has rigid projectives and injectives, and assume they all have the same Loewy

length. Then, by Theorem B,

R (RA) ∼= SA ∼= (RAop)
op ∼= (RA)op. (3.15)

In particular, the identity (3.15) holds when A is the Brauer tree algebra studied

in Section 2.7. Recall that, for a field K of prime characteristic, any nonsimple block

of KΣm of finite type is Morita equivalent to one of these Brauer tree algebras.

The principal block A of the group algebra KΣ2p, where K is a field of odd

characteristic p, is yet another example of a self-injective algebra with rigid projective-

injectives having fixed Loewy length (see [48]). So the identity (3.15) also holds in

this case.

Finally, note that (3.15) is also satisfied when A is a preprojective algebra of

type An (see Subsection 5.3.3), as these are also self-injective algebras with rigid

projective-injectives having constant Loewy length.
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Chapter 4

Further observations

4.1 Overview of the chapter

In this rather disconnected chapter we answer further natural questions about the

ADR algebra, and investigate a slightly weaker version of the class of (left) ultra

strongly quasihereditary algebras. This chapter marks a transition of focus. Here we

wrap up our remaining questions about the ADR algebra and lay the basis for some

of the problems investigated in Chapter 5.

The first half of this chapter (Section 4.2) attempts to answer the following ques-

tions concerning the ADR algebra:

• To what extent is the ADR algebra RA a “Schur algebra” for A?

• What is the representation type of the subcategories F (∆) and F (∇) of the

category modRA? Is this related to the representation type of A?

• When is the ADR algebra Ringel self-dual?

• Does the ADR algebra RA provide any information about the finitistic dimen-

sion of A?

In the second half of this chapter (Section 4.3), we derive the main properties

of a class of quasihereditary algebras which contains every LUSQ algebra (and in

particular it includes the Ringel dual R (RA) and the opposite algebra (RA)op of the

ADR algebra RA of A). To be precise, we study the quasihereditary algebras (B,Φ,v)

such that the elements in Φ can be labelled as

Φ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ li},
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for some n, li ∈ Z>0, where

0 ⊂ Pi,li ⊂ . . . ⊂ Pi,2 ⊂ Pi,1

is the unique ∆-filtration of Pi,1. The results deduced in Section 4.3 will then be used

in Chapter 5 to provide examples of (left) strongly quasihereditary algebras.

4.2 Further questions about the ADR algebra

We give partial answers to the previously stated questions.

4.2.1 The ADR algebra is not a 1-faithful quasihereditary
cover

The general theory of n-faithful quasihereditary covers of an algebra was developed

by Rouquier in [53] (see also [3, Section 4] for a self-contained approach to Rouquier’s

theory), in order to establish important results about rational Cherednik algebras.

The highlight in [53] is the following theorem: the category O for a rational Cherednik

algebra of type A is equivalent to the module category of a q-Schur algebra (for certain

parameters q) when the base field is C. The main idea behind the proof of this result is

the uniqueness, up to Morita equivalence, of certain types of “quasihereditary covers”

called 1-faithful quasihereditary covers.

Definition 4.2.1 ([53], [3, Definition 4.45]). Let A and B be finite-dimensional K-

algebras1 and let P be a projective in modB. Suppose that:

1. A ∼= EndB (P ) op;

2. B is quasihereditary with respect to some poset (Φ,v) and EndB (∆ (i)) ∼= K

for all i ∈ Φ.

Then B is a n-faithful quasihereditary cover of A if the functor

F := HomB (P,−) : modB −→ modA,

satisfies the condition

ExtiB (X, Y ) ∼= ExtiA (F (X), F (Y )) .

for all X and Y in F (∆) and all i, 0 ≤ i ≤ n.

The A-modules S(i) := F (∆ (i)), i ∈ Φ, are called the Specht modules .

1In [53], the underlying algebras in the definition of n-faithful quasihereditary cover are more
general. We use finite-dimensional K-algebras for simplicity.
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Loosely speaking, a pair (B,P ) is a 1-faithful quasihereditary cover of A ∼=
EndB (P ) op if the Specht modules over A can be glued together in way which mimics

the gluing of the standard modules over B. The definition of 1-faithful quasiheredi-

tary cover emulates classic results relating the Specht modules over the algebra of the

symmetric group and the corresponding standard modules over the Schur algebra. A

quasihereditary cover is n-faithful for higher values of n if the correspondence between

the standard B-modules ∆ (i) and the Specht A-modules S(i) not only preserves the

gluing but also the “relations” up to length n.

The importance of 1-faithful quasihereditary covers stems from the following re-

sult, due to Rouquier ([53]).

Theorem 4.2.2 ([53], [3, Theorem 4.50]). Let (B,Φ,v) and (B′,Φ′,v′) be quasi-

hereditary algebras, and suppose that (B,P ) and (B′, P ′) are 1-faithful quasihereditary

covers of A. If

{S(i) : i ∈ Φ} = {S(i′) : i′ ∈ Φ′},

then modB and modB′ are equivalent categories.

Consider now a finite-dimensional K-algebra A, and suppose that EndA (Li) ∼= K

for every simple A-module Li. It is not difficult to check that EndRA (Li,j) ∼= K

for every simple RA-module Li,j. Define P := HomA (G,A). Note that (RA, P ) is a

0-faithful quasihereditary cover of A – this follows from the fact that HomA (G,−) is

right adjoint to the functor HomRA (P,−). However, (RA, P ) is not usually a 1-faithful

quasihereditary cover of A.

Proposition 4.2.3. Using the previous notation, the pair (RA, P ) is a 1-faithful

quasihereditary cover of A if and only if A is semisimple.

Proof. If A is semisimple then the algebra RA is Morita equivalent to A. So in this

case RA is trivially a 1-faithful quasihereditary cover of A.

If A is not semisimple, then, using the notation introduced in Section 2.2, there

are simple A-modules Li and Lk such that Ext1
A (Li, Lk) 6= 0. Lemma 1.4.5 implies

that Ext1
RA

(∆ (i, 1) ,∆ (k, 1)) = 0. Now recall that the module ∆ (x, 1) is isomorphic

to Px,1 = HomA (G,Lx) (see Proposition 2.3.4), so

S(x, 1) = F (∆ (x, 1)) = HomRA (P,∆ (x, 1)) ∼= Lx.

Since Ext1
A (F (∆ (i, 1)) , F (∆ (k, 1))) 6= 0, then (RA, P ) cannot be a 1-faithful quasi-

hereditary cover of A.

91



4.2.2 The representation type of F (∆) and F (∇)

Recall that an Artin algebra A has finite representation type if there are only finitely

many isomorphism classes of indecomposable modules in modA. In a similar way,

we say that a subcategory C of modA has finite type if there are only finitely many

isomorphism classes of indecomposables in C.
We would like to understand the relationship between the representation type of

A and the representation type of RA, F (∆) and F (∇). It is easy to conclude that

A has finite representation type whenever RA has finite type. However, the converse

of this assertion is not true.

According to Lemma 2.3.6, the category modA can be embedded in F (∆), and

these categories seem to be quite similar. It would not be outlandish to expect modA

and F (∆) to have the same representation type.

In contrast with F (∆), the subcategory F (∇) of modRA seems to be quite small:

Proposition 2.5.11 implies that the injective indecomposable RA-modules are filtered

by “very few” costandard modules.

It turns out that the categories F (∆) and F (∇) may have infinite type, even if

A has finite representation type. In particular, RA and A do not need to have the

same representation type. To see this, we use a result by Dlab and Ringel ([21]).

Proposition 4.2.4. Let A be the (finite type) algebra K[x]/ 〈xn〉, n ∈ Z>0. The

subcategories F (∆) and F (∇) of modRA have finite type for n ≤ 5 and infinite type

for n = 6.

Proof. Let Γ be the Auslander algebra of A, i.e. assume that Γ = EndA (M) where M

is the direct sum of all the indecomposable modules in modA (up to isomorphism).

According to [21, Section 7], the algebra Γ is quasihereditary in a unique way (it is

not difficult to see this directly). Moreover, the category F (∆) has finite type for

n ≤ 5 and tubular type E8 for n = 6 ([21, Proposition 7.2]).

Observe that Γ is isomorphic to the algebras (RA)op and (SA)op, asA is a Nakayama

algebra (recall the definition of SA in Subsection 3.4.1). Since the algebra Γ is quasi-

hereditary in a unique way, then the subcategory F (∇) of modRA has finite type

for n ≤ 5 and infinite type for n = 6, and the exact same assertion holds for SA.

Note that SA ∼= (RAop)
op. Since A ∼= Aop then SA ∼= (RA)op. Because these algebras

are quasihereditary in a unique way, then the subcategory F (∆) of modRA also has

finite type for n ≤ 5 and infinite type for n = 6.
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Remark 4.2.5. According to [45], the category of∇-good modules over a right strongly

quasihereditary algebra satisfies a tame-wild dichotomy property. Let (B,Φ,v) be a

right strongly quasiherediatary algebra. By Corollary 4.45 in [45], the subcategory

F (∇) of modB either has finite type, or it is tame or wild.

We now give an explicit example of an ADR algebra whose category of ∇-good

modules has infinite type. This example was suggested by S. O. Smalø.

Example 4.2.6. Consider the bound quiver algebra A = KQ/〈α2, β2, αβ − βα〉,
where

Q =
1◦ βα ,

and K is an infinite field.

The ADR algebra RA of A is isomorphic to KQ′/I, where

Q′ =

(1,1)
◦

(1,2)
◦

(1,3)
◦

t
(2)
1

α(1)

t
(3)
1

β(1)

α(2) β(2)

,

and I is generated by the relations

α(1)t
(2)
1 = β(1)t

(2)
1 = 0,

t
(2)
1 α(1) − α(2)t

(3)
1 = t

(2)
1 β(1) − β(2)t

(3)
1 = 0,

α(1)α(2) = β(1)β(2) = α(1)β(2) − β(1)α(2) = 0.

The injective RA-module Q1,3 (which is in fact a projective-injective module) may

be represented by

(1, 3)

(1, 2) (1, 2)

(1, 3) (1, 1) (1, 3)

(1, 2)

(1, 3)

α(2) β(2)

β(1)
α(1)

β(2) α(2)

.
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The costandard RA-modules are given by

(1, 3)

(1, 2) (1, 2)

(1, 1)

α(2) β(2)

β(1)
α(1)

,
(1, 3) (1, 3)

(1, 2)β(2) α(2)
, (1, 3) .

Note that Q1,2
∼= Q1,3/L1,3 (see Proposition 2.5.11). Consider the module N =

Q1,2/L1,2. We have that SocN = L1,3⊕L1,3⊕L1,1. Given k ∈ K, define hk : L1,3 −→
N as

hk := ι ◦

 1L1,3

k1L1,3

0

 ,
where ι denotes the inclusion of SocN in N . The module Cokerhk, k ∈ K, is

indecomposable and it lies in F (∇). It is not difficult to check that Cokerhk 6∼=
Cokerhk′ for k 6= k′. This shows that the category F (∇) has infinite representation

type.

4.2.3 Ringel self-duality for ADR algebras

As observed in Subsection 3.4.1, the Ringel dual R (RA) of an ADR algebra RA is

somehow similar to the algebra (RAop)
op. It is not unusual for a quasiherederitary

algebra (B,Φ,v) to be isomorphic to its own Ringel dual (R(B),Φ,v op) through

a correspondence which preserves the quasihereditary data. This phenomenon is

frequently observed in quasihereditary algebras and highest weight categories arising

from the theory of semisimple Lie algebras and algebraic groups. Donkin ([23], [24])

and Erdmann–Henke ([28]) have proved that, under certain conditions, a (q-)Schur

algebra of type A is its own Ringel dual. Some of these results were extended by

Adamovich and Rybnikov ([1]) to Ringel dualities between certain Schur algebras of

classical groups. Furthermore, Soergel ([58]) has shown that the category O is Ringel

self-dual.

Therefore, it is natural to ask when the ADR algebra is Ringel self-dual. Recall

that RA is a RUSQ algebra, whereas R (RA) is a LUSQ algebra (see Theorem 2.6.1).

For (RA,Λ,E) to be Ringel self-dual it has to be both a RUSQ and LUSQ algebra.

According to Erdmann–Parker ([30]) and Ringel ([51]), this implies that gl. dimRA ≤
2.

Proposition 4.2.7 ([30, §2.1], [51]). Let (B,Φ,v) be a quasihereditary algebra. If B

is both left and right strongly quasihereditary then gl. dimB ≤ 2.
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By Proposition 2 in [56] (and its proof), if gl. dimRA ≤ 2 then RadA belongs

to addG. Thus, if the ADR algebra of an Artin algebra A is Ringel self-dual, then

RadA ∈ addG. This shows that Ringel self-dual ADR algebras are quite uncommon.

It is an interesting exercise to check that RA is Ringel self-dual for A = K[x]/ 〈xn〉,
n ∈ Z>0.

4.2.4 Representation dimension, finitistic dimension and the
ADR algebra

The (little) finitistic dimension of an Artin algebra A, denoted by fin. dimA, is defined

to be the supremum of the projective dimensions of all finitely generated modules

of finite projective dimension. The finitistic dimension conjecture says that every

algebra should have finite finitistic dimension. This conjecture, initially a question

by Rosenberg and Zelinski, was published by Bass in 1960 (see [10]) and has attracted

the attention of many mathematicians in the last decades.

The representation dimension of an Artin algebra, introduced by Auslander in [4],

is also a homological dimension which has been widely studied since its first appear-

ance in the literature. Given an Artin algebra A, the representation dimension of A,

denoted by rep. dimA, is the minimal possible global dimension of the endomorphism

algebra of an A-module which is both a generator and a cogenerator of modA.

Example 4.2.8. Take A to be a self-injective Artin algebra. Then the generator G

(as in (2.1)) is also a cogenerator of modA. Hence rep. dimA ≤ gl. dimRA ≤ LL(A)

(see Corollary 3.3.12).

All the classes of algebras for which Auslander determined the precise represen-

tation dimension turned out to have representation dimension at most 3. Thus, he

asked whether the representation dimension can be greater than 3, but also, whether

it always has to be finite.

One major step towards the understanding of these homological dimensions was

made in 2005 by Igusa–Todorov (see [38]). They proved that

rep. dimA ≤ 3⇒ fin. dimA <∞.

However, it turns out that there are algebras with arbitrarily large representation

dimension. Indeed, Rouquier proved in [52] that the exterior algebra Λ (Km) has

representation dimension m+ 1.
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More recently, some authors have been trying to adapt the methods of Igusa–

Todorov to get new criteria for the finiteness of the finitistic dimension. In [63],

Zhang–Zhang proved that for an Artin algebra B we have

rep. dimB ≤ 3⇒ fin. dim ξBξ <∞,

for ξ any idempotent in B, and asked whether every ADR algebra RA satisfies

rep. dimRA ≤ 3. Note that an affirmative answer to this question would imply

the finitistic dimension conjecture, as A is an idempotent subalgebra of RA (modulo

Morita equivalence). In [60], Wei refined the work of Zhang–Zhang. In this paper,

the author introduces the notion of n-Igusa–Todorov algebra, n ∈ Z≥0, proves that

every such algebra has finite finitistic dimension and observes that algebras of rep-

resentation dimension not greater than 3 are 0-Igusa–Todorov. Wei also proves that

the class of 2-Igusa–Todorov algebras is closed under taking idempotent subalgebras.

For the definition below, recall that Ω (M) is the kernel of the projective cover of M

in modA and that Ωi+1 (M) := Ω (Ωi (M)), Ω0 (M) := M .

Definition 4.2.9 ([60]). Let A be an Artin algebra and let n ≥ 0. Then A is said to

be n-Igusa–Todorov if there exists V in modA such that for any M in modA there

is an exact sequence

0 V1 V2 Ωn (M) 0 , (4.1)

with V1 and V2 in addV .

It turns out that there are algebras which are not n-Igusa–Todorov for any n.

This is an immediate consequence of a result by Rouquier in [52].

Proposition 4.2.10. Let K be an uncountable field and consider the exterior algebra

Λ (Km), with m ≥ 3. The algebra Λ (Km) is not n-Igusa–Todorov for any n ≥ 0.

Proof. By Corollary 4.4 in [52], given a module V in mod Λ (Km) there is a module

MV in mod Λ (Km) such that there is no exact sequence

0 V1 V2 MV 0 ,

with V1 and V2 in addV . Since Λ (Km) is a self-injective algebra then it is easy to

conclude the class of all nth-syzygies, Ωn (mod Λ (Km)), n ≥ 1, coincides with the

class of all modules in mod Λ (Km) which are not projective. Therefore the algebra

Λ (Km) cannot be n-Igusa–Todorov for any n ≥ 1 (nor for n = 0).
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As a consequence, we get that there are ADR algebras with representation dimen-

sion greater than 3.

Corollary 4.2.11. Let K be an uncountable field and suppose that m ≥ 3. Then the

quasihereditary algebra RΛ(Km) is such that rep. dimRΛ(Km) ≥ 4.

Proof. If we had rep. dimRΛ(Km) ≤ 3 then RΛ(Km) would be 0-Igusa–Todorov by

Proposition 3.1 in [60]. But then RΛ(Km) would be 2-Igusa–Todorov. As Λ (Km) is an

idempotent subalgebra of RΛ(Km) then, by Theorem 3.10 in [60], the algebra Λ (Km)

would be 2-Igusa–Todorov. This contradicts Proposition 4.2.10.

4.3 A class of left strongly quasihereditary alge-

bras

The second part of this chapter is concerned with a slightly weaker version of the class

of LUSQ algebras. Our conclusions will then be used in Section 5.4 to produce general

examples of LUSQ endomorphism algebras and to show that certain quasihereditary

algebras appearing in the literature are LUSQ algebras. The main purpose of this

section is to derive auxiliary results for Chapter 5.

It is useful to call to mind the definition of a left strongly quasihereditary algebra,

given in Section 2.4.

Definition 4.3.1 ([19], [21, Lemma 4.1]). A quasihereditary algebra (B,Φ,v) is left

strongly quasihereditary if it satisfies one of the following equivalent conditions:

1. ∇ (i) /Li ∈ F (∇) for all i ∈ Φ;

2. F (∇) is closed under quotients;

3. for all i in Φ the module ∆ (i) has projective dimension at most one;

4. every module in F (∆) has projective dimension at most one;

5. every divisible module (i.e. every module generated by injectives) belongs to

F (∇).

Recall that a left strongly quasihereditary algebra (B,Φ,v) is said to be left ultra

strongly quasihereditary (LUSQ, for short) if Pi is a tilting module whenever ∇ (i)

is a simple module (see Subsection 2.5.1). In other words, a quasihereditary algebra

(B,Φ,v) is a LUSQ algebra if the following axioms are satisfied for every i ∈ Φ:
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(A1*) ∇ (i) /Li ∈ F (∇);

(A2*) Pi ∈ F (∇) whenever ∇ (i) is simple.

Let (B,Φ,v) be a LUSQ algebra. By dualising the results for RUSQ algebras ob-

tained in Subsection 2.5.1 (see Propositions 2.5.5 and 2.5.6), we deduce the following.

Proposition 4.3.2. Let (B,Φ,v) be a LUSQ algebra. Then F (∇) is closed under

factor modules and the costandard modules are uniserial. It is possible to relabel the

elements in Φ as

Φ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ li}, (4.2)

n, li ∈ Z>0, so that the following holds:

1. ∇ (i, j) /Li,j = ∇ (i, j − 1) for j > 1, and ∇ (i, 1) = Li,1;

2. Pi,1 = T (i, li);

3. for M ∈ F (∇), the number of costandard modules appearing in a ∇-filtration

of M is given by
∑n

i=1[M : Li,1]

4. a module M belongs to F (∇) if and only if TopM is a (finite) direct sum of

modules of type Li,1;

As seen in Subsection 2.5.2, the RUSQ algebras possess remarkable properties.

The injective indecomposable modules over a RUSQ algebra are quotients of inde-

composable tilting modules, and all these modules have a unique ∇-filtration (see

Theorem 2.5.8 and Proposition 2.5.11). The corresponding results about LUSQ alge-

bras are summarised in the next theorem.

Theorem 4.3.3. Let (B,Φ,v) be a LUSQ algebra. Using the labelling introduced in

(4.2), the chain of inclusions

0 ⊂ Pi,li ⊂ · · · ⊂ Pi,j ⊂ · · · ⊂ Pi,1 = T (i, li) ,

where Pi,j is the projective cover of the simple module the label (i, j), is the unique

∆-filtration of Pi,1. For 1 ≤ j < li, the indecomposable tilting module T (i, j) is

isomorphic to Pi,1/Pi,j+1.

We are interested in left strongly quasihereditary algebras whose projective inde-

composable modules have a unique ∆-filtration.
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4.3.1 Definition of weak LUSQ algebra

Fix a quasihereditary algebra (B,Φ,v). Assume that the elements in Φ can be

labelled as

Φ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ li},

where

0 ⊂ Pi,li ⊂ . . . ⊂ Pi,2 ⊂ Pi,1 (4.3)

is a ∆-filtration of Pi,1 (so Pi,j/Pi,j+1
∼= ∆ (i, j) for 1 ≤ j < li and Pi,li

∼= ∆ (i, li)). As

a consequence, every projective indecomposable B-module has a unique ∆-filtration,

and any two projective indecomposable modules Pi,1 and Pk,1 with i 6= k have no

common factors in their ∆-filtration.

According to Theorem 4.3.3, every LUSQ algebra fits into this setup. For this rea-

son, and for ease of reference, we shall call (B,Φ,v) a weak LUSQ algebra (WLUSQ

algebra, for short).

The purpose of this section is to derive the basic properties of WLUSQ algebras.

The notion of a WLUSQ algebra may seem a bit artificial and unmotivated right

now. Its usefulness will hopefully become apparent in Chapter 5, when investigating

strongly quasihereditary endomorphism algebras.

4.3.2 Properties of weak LUSQ algebras

Lemma 4.3.4. Let (B,Φ,v) be a WLUSQ algebra. For every (i, j) ∈ Φ, there are

short exact sequences

0 Pi,j+1 Pi,j ∆ (i, j) 0 , (4.4)

where Pi,li+1 := 0. In particular, (i, j) < (i, j′) for j < j′, and the algebra B is left

strongly quasihereditary (so F (∇) is closed under quotients).

Proof. The existence of the short exact sequence (4.4) follows from (4.3). The fact

that (i, j) < (i, j′) for j < j′ follows from the characterisation of quasihereditary

algebras in Proposition 1.4.12. The exact sequences (4.4) imply that every standard

B-module has injective dimension at most 1. That is, B is left strongly quasiheredi-

tary.

The previous result shows that there is a chain of class inclusions

LUSQ algebras ⊂WLUSQ algebras ⊂ left strongly quasihereditary algebras.

99



The next lemma gives an alternative characterisation of the projective indecom-

posable modules over a WLUSQ algebra. This result will be used in the proof of

Theorem 4.3.13, which describes the tilting modules over a WLUSQ algebra.

Lemma 4.3.5. Let (B,Φ,v) be a WLUSQ algebra. Then

Pi,j+1 = Tr

 ⊕
(k,l): (k,l)6v(i,j)

Pk,l, Pi,p

 = Ii,jPi,p,

for all p and j such that 1 ≤ p ≤ j < li, where Ii,j = Tr(
⊕

(k,l): (k,l)6v(i,j) Pk,l, B) is an

idempotent ideal in B. In particular, Pi,j+1 is the largest submodule of Pi,p generated

by projectives Pk,l, with (k, l) 6v (i, j).

Proof. Lemma 4.3.4 implies that (i, j + 1) 6v (i, j), so Pi,j+1 is a submodule of Pi,p

generated by
⊕

(k,l): (k,l)6v(i,j) Pk,l. Hence

Pi,j+1 ⊆ Tr

 ⊕
(k,l): (k,l) 6v(i,j)

Pk,l, Pi,p

 = Ii,jPi,p,

where Ii,j is the idempotent ideal Tr(
⊕

(k,l): (k,l) 6v(i,j) Pk,l, B) (see Remark 1.3.12).

To prove the other inclusion, note that Pi,p/Ii,jPi,p is the largest factor module

of Pi,p whose composition factors are all of the form Lk,l, with (k, l) v (i, j) (see

Remark 1.4.1). The module Pi,p/Pi,j+1 has a (unique) filtration by the standard

modules, with factors ∆ (i, p) ,∆ (i, p+ 1) , . . . ,∆ (i, j). In particular, all the compo-

sitions factors of Pi,p/Pi,j+1 are of the form Lk,l, with (k, l) v (i, j). So there is an

epic ε : Pi,p/Ii,jPi,p −→ Pi,p/Pi,j+1. The inclusion Pi,j+1 ⊆ Ii,jPi,p induces a canonical

epic π : Pi,p/Pi,j+1 −→ Pi,p/Ii,jPi,p. So the endomorphism ε ◦ π is an epic, and hence

it is an automorphism. As a consequence, the map π is injective, which implies that

Pi,j+1 = Ii,jPi,p.

We now initiate the study of the costandard modules over a WLUSQ algebra. The

chain (4.3) provides information about the structure of the costandard modules.

Lemma 4.3.6. For every (i, j) ∈ Φ we have that

dimEndB(∇(i,j)) HomB (Pk,l,∇ (i, j)) =

{
1 if k = i and l ≤ j,

0 otherwise.

The module ∇ (i, j) has composition factors Li,j, Li,j−1, . . . , Li,1, with Li,j having mul-

tiplicity one in ∇ (i, j). In particular, the modules ∇ (i, 1), 1 ≤ i ≤ n, are all the

simple costandard modules.
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Proof. By the Brauer-Humphreys reciprocity (see Lemma 1.4.11), we have that

(Pk,l : ∆ (i, j)) = dimEndB(∇(i,j)) HomB (Pk,l,∇ (i, j)).

The claim then follows from Lemma 4.3.4.

The costandard modules over a LUSQ algebra are uniserial and satisfy the iden-

tity ∇ (i, j) /Li,j ∼= ∇ (i, j − 1) (see Proposition 4.3.2). As we shall see shortly, this

property does not generally hold for WLUSQ algebras.

Let B be a WLUSQ algebra (over the ring of scalars C), and denote the (Jordan–

Hölder) length of a module M in modC by l(M). Suppose that l(EndB (Li,j)) =

l(EndB (Li,j′)) for all i, j and j′. This holds, for instance, when the ring of scalars is an

algebraically closed field, or when B is a path algebra or a bound quiver algebra over

some field. In this specific situation, the constandard B-modules satisfy the identity

∇ (i, j) /Li,j ∼= ∇ (i, j − 1). In particular, the costandard modules are uniserial in

this case.

Lemma 4.3.7. Let (B,Φ,v) be a WLUSQ algebra (over C). Suppose that the C-

modules EndB (Li,j−1) and EndB (Li,j) have the same length, for some (i, j) ∈ Φ.

Then ∇ (i, j) /Li,j ∼= ∇ (i, j − 1).

The following remark is used in the proof of Lemma 4.3.7.

Remark 4.3.8. For x, y ∈ Φ, the multiplicity of Lx in Top(RadPy) coincides with

the dimension of Ext1
B (Ly, Lx) over the division algebra EndB (Lx) (see Proposition

1.2.3). Similarly, the multiplicity of Ly in Soc(Qx/Lx) coincides with the dimension

of Ext1
B (Ly, Lx) over EndB (Ly)

op. If B is an Artin C-algebra and l(EndB (Lx)) =

l(EndB (Ly)), then

dimEndB(Lx) Ext1
B (Ly, Lx) = l

(
Ext1

B (Ly, Lx)
)
/l (EndB (Lx))

= l
(
Ext1

B (Ly, Lx)
)
/l (EndB (Ly))

= dimEndB(Ly)op Ext1
B (Ly, Lx) ,

so the multiplicity of Ly in Soc(Qx/Lx) coincides with the multiplicity of Lx in

Top(RadPy).

Proof of Lemma 4.3.7. Since l (EndB (Li,j−1)) = l (EndB (Li,j)), then

[Soc(Qi,j/Li,j) : Li,j−1] = [Top(RadPi,j−1) : Li,j] (4.5)

by Remark 4.3.8.
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Let p ≤ j. Then (i, p) v (i, j) by Lemma 4.3.4, so

[Soc(Qi,j/Li,j) : Li,p] = [Soc(∇ (i, j) /Li,j) : Li,p]. (4.6)

From (4.4) (see Lemma 4.3.4) we get the short exact sequence

0 Pi,p+1 RadPi,p Rad ∆ (i, p) 0

and from the fact that (i, j) w (i, p) when p ≤ j, we conclude that

(p ≤ j ∧ [Top(RadPi,p) : Li,j] 6= 0)⇒ (p+ 1 = j ∧ [Top(RadPi,p) : Li,j] = 1) . (4.7)

From Lemma 4.3.6, it follows that [Soc(∇ (i, j) /Li,j) : Li,p] 6= 0 for some p ≤ j,

and all the summands of Soc(∇ (i, j) /Li,j) must be of the form Li,p with p ≤ j. The

identity (4.6), together with Proposition 1.2.3, implies that [Top(RadPi,p) : Li,j] 6= 0.

But then p + 1 = j and [Top(RadPi,j−1) : Li,j] = 1 by (4.7). Using (4.5) and (4.6),

we conclude that

[Top(RadPi,j−1) : Li,j] = [Soc(Qi,j/Li,j) : Li,j−1] = [Soc(∇ (i, j) /Li,j) : Li,j−1] = 1.

This means that ∇ (i, j) /Li,j has simple socle Li,j−1. As ∇ (i, j) /Li,j ∈ F (∇) (F (∇)

is closed under quotients), then ∇ (i, j − 1) appears in the bottom of a ∇-filtration of

∇ (i, j) /Li,j. Note that (i, j−1) is a highest weight in∇ (i, j) /Li,j (see Lemma 4.3.6).

But then Lemma 1.4.5 implies that ∇ (i, j) /Li,j ∼= ∇ (i, j − 1)⊕X, X ∈ F (∇). Since

∇ (i, j) /Li,j has simple socle, we must have ∇ (i, j) /Li,j ∼= ∇ (i, j − 1).

As an immediate consequence of the previous result, we conclude the following.

Corollary 4.3.9. Let (B,Φ,v) be a WLUSQ algebra (over C). Suppose that the C-

modules EndB (Li,j) and EndB (Li,j′) have the same length for all i, j and j′ satisfying

1 ≤ i ≤ n, 1 ≤ j, j′ and j, j′ ≤ li. Then ∇ (i, j) /Li,j ∼= ∇ (i, j − 1) for every (i, j) ∈ Φ

(where ∇ (i, 0) := 0). In particular, the costandard B-modules are uniserial. The

composition factors of ∇ (i, j) are the simple modules Li,j, Li,j−1 . . . , Li,1, ordered from

the socle to the top.

The costandard modules over a WLUSQ algebra are not necessarily uniserial. The

next example illustrates this claim.

Example 4.3.10. Consider the finite-dimensional R-algebra B,

B =

[
C C
0 R

]
.
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The module

P1,2 :=

[
C 0
0 0

]
is a projective simple B-module. This is 2-dimensional over R.

Similarly, the module

P1,1 :=

[
0 C
0 R

]
is also projective indecomposable over B, and

X =

[
0 C
0 0

]
is a B-submodule of P1,1 which is isomorphic to P1,2. We identify X with P1,2. Now

P1,1/P1,2 = L1,1 is 1-dimensional over R, hence simple. Note that B is quasihereditary

with respect to the order (1, 1) < (1, 2) and 0 ⊂ P1,2 ⊂ P1,1 is the unique ∆-filtration

of P1,1. Thus B is a WLUSQ algebra with respect to the labelling chosen. By

Proposition 1.2.3, the multiplicity of L1,1 in Soc(Q1,2/L1,2) equals the dimension of

Ext1
B (L1,1, L1,2) over EndB (L1,1) op ∼= R. Now

dimR Ext1
B (L1,1, L1,2) = dimEndB(L1,2) Ext1

B (L1,1, L1,2)× dimR EndB (L1,2)

= [Top(RadP1,1) : L1,2]× 2 = 2.

Thus Soc(Q1,2/L1,2) = L1,1 ⊕ L1,1 = Soc(∇ (1, 2) /L1,2). In particular, ∇ (1, 2) is not

a uniserial module, even though B is a WLUSQ algebra.

We have just seen that the class of LUSQ algebras is properly contained in the

class of WLUSQ algebras, since the costandard modules over a WLUSQ algebra are

not necessarily uniserial. The tilting modules over a LUSQ algebra are specially nice.

We shall now look at the tilting modules over a WLUSQ algebra (B,Φ,v). Observe

that ∇ (i, 1) ∼= Li,1, and these are all the simple costandard modules over B (see

Lemma 4.3.6). For B to be a LUSQ algebra, Pi,1 would have to be isomorphic to the

tilting module T (i, li) (see Theorem 4.3.3). This is not usually the case.

Example 4.3.11. Consider the quiver

Q =
(1,1)
◦

(1,2)
◦

(1,3)
◦

(2,1)
◦α

β

γ

δ

and the algebra B = KQ/〈βγ〉, where K is a field. Observe that B is quasihereditary

with respect to the order v, defined by

(k, l) < (i, j)⇔ l < j.
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We have that P2,1 = L2,1 = ∆ (2, 1) and 0 ⊂ P1,3 ⊂ P1,2 ⊂ P1,1 is the unique ∆-

filtration of P1,1. That is, B is a WLUSQ algebra with respect to the labelling chosen

for the vertices of Q. The projective indecomposable B-modules are given by

P2,1 = (2, 1) , P1,1 =

(1, 1)

(1, 2)

(1, 3)

(2, 1) (1, 2)

,

P1,2 =

(1, 2)

(1, 3)

(2, 1) (1, 2)

, P1,3 =
(1, 3)

(2, 1) (1, 2)

.

The injective indecomposable modules can be represented as

Q1,1 = (1, 1) , Q1,2 =

(1, 1)

(1, 2)

(1, 1) (1, 3)

(1, 2)

,

Q1,3 =

(1, 1)

(1, 2)

(1, 3)

, Q2,1 =

(1, 1)

(1, 2)

(1, 3)

(2, 1)

.

As expected (see Corollary 4.3.9), the costandard B-modules are uniserial and satisfy

the identity ∇ (i, j) /Li,j ∼= ∇ (i, j − 1). The indecomposable tilting modules are

given by

T (2, 1) = (2, 1) , T (1, 1) = (1, 1) ,
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T (1, 2) =
(1, 1)

(1, 2)

, T (1, 3) =

(1, 1)

(1, 2)

(1, 1) (1, 3)

(1, 2) (2, 1)

.

Observe that P1,1 is not a tilting module, so B is not a LUSQ algebra. To be precise,

note that P1,1 6∼= T (1, 3). However, P1,1 can be embedded in T (1, 3), and T (1, 3) /P1,1

lies in F (∆)∩F (∇). We shall see (in Theorem 4.3.13) that this illustrates a general

property of WLUSQ algebras.

Each indecomposable tilting module appears as a central term in two special short

exact sequences (see Theorem 1.4.14). The next result describes the corresponding

short exact sequences (1.4) for WLUSQ algebras.

Proposition 4.3.12. Let (B,Φ,v) be a WLUSQ algebra. For every (i, j) ∈ Φ there

is a short exact sequence

0 ∆ (i, j) T (i, j) T (i, j − 1)⊕ U (i, j) 0
φ

, (4.8)

with U (i, j) ∈ F (∆) ∩ F (∇) and T (i, 0) := 0. The morphism φ is a left minimal

F (∇)-approximation of ∆ (i, j).

Proof. Let the maps φ and ψ be as in Theorem 1.4.14. Consider the commutative

diagram

0

0 Li,j

0 Y (i, j) T (i, j) ∇ (i, j) 0

0 Ker(π ◦ ψ) T (i, j) ∇ (i, j) /Li,j 0

Li,j 0

0

∃ t

ψ

π

π◦ψ

. (4.9)
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Using the second row of this diagram, we get a new diagram

0

0 Keru

0 ∆ (i, j) T (i, j) X (i, j) 0

0 Ker(π ◦ ψ) T (i, j) ∇ (i, j) /Li,j 0

Coker v 0

0

∃ v

φ

∃u

π◦ψ

. (4.10)

Here the morphisms v and u exist because π ◦ ψ ◦ φ = 0.

We claim that Keru ∈ F (∇). Let ι denote the inclusion of Rad ∆ (i, j) in ∆ (i, j).

We have the commutative diagram

0 Rad ∆ (i, j) ∆ (i, j) Li,j 0

0 Y (i, j) Ker(π ◦ ψ) Li,j 0

ι

∃ y v ∃w

t coker t

.

Again, the morphisms y and w exist because (coker t)◦v◦ι = 0. Since the composition

factor Li,j appears exactly once in the composition series of Ker(π ◦ ψ) (look at the

diagram (4.9)), and since v 6= 0 (as φ 6= 0), then (coker t) ◦ v 6= 0. This implies that

w 6= 0, hence w is an isomorphism. So

Coker y ∼= Coker v ∼= Keru.

Note that Coker y lies in F (∇), as F (∇) is closed under quotients by Lemma 4.3.4.

Thus Keru ∈ F (∇).

By the same argument (see Lemma 4.3.4), the module ∇ (i, j) /Li,j lies in F (∇).

Consequently, the module X (i, j) belongs to F (∇) ∩ F (∆) (look at the right hand

column of the diagram (4.10)). By Lemma 4.3.6, Li,j−1 is the composition factor

with highest weight appearing in the composition series of ∇ (i, j) /Li,j. By part 2

of Lemma 1.4.5, the factor ∇ (i, j − 1) must appear in the top part of a ∇-filtration
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of ∇ (i, j) /Li,j. Now, by looking at the right hand column in (4.10), and by noticing

that the modules Keru, ∇ (i, j) /Li,j lie in F (∇), we conclude that there exists a

short exact sequence

0 Ker z X (i, j) ∇ (i, j − 1) 0z ,

with Ker z ∈ F (∇). The module X (i, j), which lies in F (∆) ∩ F (∇), is a direct

sum of indecomposable tilting modules. So

X (i, j) =
⊕
θ∈Θ

T (kθ, lθ) ,

for some (finite) set of indexes Θ. The factor ∇ (i, j − 1) has to be in the top of a

∇-filtration of T (kθ′ , lθ′), for some θ′ ∈ Θ. Thus (kθ′ , lθ′) = (i, j − 1), for some θ′ ∈ Θ

(this follows from Lemma 2.5.7, part 3). Therefore, we get the short exact sequence

0 ∆ (i, j) T (i, j) T (i, j − 1)⊕ U (i, j) 0
φ

,

where U (i, j) =
⊕

θ∈Θ−{θ′} T (kθ, lθ).

Let (B,Φ,v) be a LUSQ algebra. In this case, the modules U(i, j) appearing in

statement of Proposition 4.3.12 are all zero – this is a consequence of Theorem 4.3.3.

According to Theorem 4.3.3, the indecomposable tilting B-modules T (i, j) are given

by the quotients Pi,1/Pi,j+1. As observed in Example 4.3.11, this does not usually

hold for WLUSQ algebras. However, the following property is satisfied.

Theorem 4.3.13. Let (B,Φ,v) be a WLUSQ algebra. For every (i, j) ∈ Φ there is

a short exact sequence

0 Pi,1/Pi,j+1 T (i, j) V (i, j) 0
φi,j

,

with V (i, j) ∈ F (∆)∩F (∇) and Pi,li+1 := 0. The map φi,j is a left minimal F (∇)-

approximation of Pi,1/Pi,j.

Proof. To prove the existence of this short exact sequence, we proceed by induction

on j, starting with j = 1. In this case Pi,1/Pi,2 ∼= ∆ (i, 1), so by Proposition 4.3.12

there is a short exact sequence

0 Pi,1/Pi,2 T (i, 1) V (i, 1) 0
φ

,
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with V (i, 1) := X (i, 1) = U (i, 1) ∈ F (∆)∩F (∇). Suppose that the claim holds for

(i, j − 1) ∈ Φ, where j ≥ 2. By Proposition 4.3.12, there is a commutative diagram

0

0 ∆ (i, j) Pi,1/Pi,j+1 Pi,1/Pi,j 0

0 ∆ (i, j) T (i, j) T (i, j − 1)⊕ U (i, j) 0

V (i, j − 1)⊕ U (i, j)

0

∃ v ∃u

φi,j−1

0


φ

. (4.11)

To prove the existence of the map u, note that the modules T (i, j) and T (i, j − 1)⊕
U (i, j) are in mod(B/Ii,j), as all its composition factors are of the form Lk,l with

(k, l) v (i, j) (recall the notation Ii,j introduced in Lemma 4.3.5). Furthermore,

observe that Pi,1/Pi,j+1 = Pi,1/Ii,jPi,1 is a projective in mod(B/Ii,j) (see Lemma

4.3.5). This proves that u exists. Consequently, there is a morphism v as depicted

above, and v is either an automorphism or it is zero.

We claim that v cannot be zero. Suppose, by contradiction, that v = 0. Then

Keru ∼= Ker v = ∆ (i, j), and Coker v ∼= ∆ (i, j). So Imu ∼= Pi,1/Pi,j, and Cokeru ∈
F (∆) (as it is an extension of the modules ∆ (i, j) and V (i, j − 1)⊕U (i, j), both in

F (∆)). Since ∆ (i, j − 1) appears in the bottom of a ∆-filtration of Imu, then the

short exact sequence

0 Imu T (i, j) Cokeru 0

(where Imu and Cokeru lie in F (∆)) gives rise to a short exact sequence

0 ∆ (i, j − 1) T (i, j) X 0 ,

with X ∈ F (∆). This contradicts part 3 of the dual version of Lemma 2.5.7. Thus

v 6= 0.
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Therefore v is an isomorphism and the diagram (4.11) gives rise to the exact

sequence

0 Pi,1/Pi,j+1 T (i, j) V (i, j) 0u ,

where V (i, j) := V (i, j − 1) ⊕ U (i, j). By induction V (i, j − 1) ∈ F (∆) ∩ F (∇),

and by Proposition 4.3.12 the module U (i, j) lies in F (∆) ∩ F (∇). Hence V (i, j)

belongs to F (∆) ∩ F (∇). Recall the notion of (minimal) approximation intro-

duced in Subsection 1.2.2. The map φi,j := u is a left F (∇)-approximation because

Ext1
B (V (i, j) ,F (∇)) = 0 (see Lemma 1.4.8, part 2). Since T (i, j) is an indecompos-

able module, then φi,j is a left minimal morphism.
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Chapter 5

Strongly quasihereditary
endomorphism algebras

5.1 Overview of the chapter

Quasihereditary algebras are abundant in mathematics. They often arise as endo-

morphism algebras of modules endowed with some sort of ‘stratification’, and in

many cases they possess a double centralizer property. Examples coming from the

classic realm of semisimple Lie algebras and algebraic groups include the Schur al-

gebras ([34]), and extensions and generalisations of these, like the q-Schur algebras

([17], [24]) and other quasihereditary algebras associated to Hecke algebras ([26]) and

to diagram algebras ([36], [37]). There are many more examples of quasihereditary

algebras arising from the most diverse contexts.

It has been noticed that certain endomorphism algebras emerging naturally in rep-

resentation theory are particularly well behaved: they are strongly quasihereditary

(recall Definition 4.3.1). Examples of these include: the Auslander algebras, asso-

ciated to algebras of finite type; the endomorphism algebras constructed by Iyama,

used in his famous proof of the finiteness of the representation dimension of Artin

algebras ([39]); certain cluster-tilted algebras studied by Geiß–Leclerc–Schröer ([32],

[31]) and Iyama–Reiten ([40]). In Chapter 2, we have seen that the ADR algebra RA

of A is yet another example of a strongly quasihereditary endomorphism algebra.

In this chapter, we describe a general way of constructing left strongly quasihered-

itary endomorphism algebras, and we show that all the examples mentioned in the

previous paragraph fit into our setting. Our procedure can be loosely described as

follows. One starts with an initial module X1, which then gives rise to a chain of

proper submodules,

0 ⊂ Xm ⊂ · · · ⊂ X2 ⊂ X1,
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with specific properties. We prove that the algebra Γ = EndA(
⊕m

i=1Xi)
op is left

strongly quasihereditary with global dimension not greater than m. In Section 5.4,

we investigate when the algebra Γ is a LUSQ algebra (as defined in Section 4.3). This

happens, for instance, if X1 is an injective module (or, more generally, if X1 “behaves

like” an injective). Therefore, we provide a unified proof to the fact that the cluster-

tilted algebras in [32] and the algebras SA ∼= (RAop)
op (see Subsection 3.4.1) are LUSQ

algebras. The methods developed in this chapter can be dualised to produce right

strongly quasihereditary algebras and RUSQ algebras.

Throughout this chapter A will denote a C-algebra in the sense of Definition

1.2.1. One should typically think of A as an algebra over a field K (possibly infinite-

dimensional). Recall that the category modA, of all A-modules which are finitely

generated over C, is a Krull-Schmidt abelian subcategory of ModA, and all the

modules in modA have finite length (see Proposition 1.2.2).

5.2 Construction

In this section, we describe a general construction that produces left strongly quasi-

hereditary endomorphism algebras. We are going to add conditions to our setup

along the way. In every step, and unless otherwise stated, we shall assume that the

conditions introduced up to that point are satisfied.

Our construction relies on a chain of inclusions stemming from an initial module

X1. We need to choose submodules of X1 so that direct sums are ‘preserved’. A way of

doing this is by applying a preradical to our original module. Recall that a preradical

in modA is just a subfunctor of the identity functor in modA (see Definition 1.3.1).

So consider,

(C1) a sequence of preradicals τ(i) in modA, 1 ≤ i ≤ m.

Additionally,

(C2) consider modules X1 in modA and Xi+1 := τ(i) (Xi), 1 ≤ i ≤ m, and suppose

that Xm+1 = 0;

(C3) assume that Xi+1 is a proper submodule of Xi , 1 ≤ i ≤ m, and define X̃ :=

⊕mi=1Xi, Γ := EndA(X̃)op.

In this situation we say that the module X̃ has m layers . According to Proposition

1.2.2, Γ is an Artin algebra, and the Γ-modules HomA(X̃,M), M ∈ modA, lie in

mod Γ.

112



Lemma 5.2.1. Assume (C1)–(C3). Let 1 ≤ i ≤ m and suppose that Y is a summand

of Xi which is not a summand of Xi+1 = τ(i) (Xi). Then τ(i) (Y ) is a proper submodule

of Y .

Proof. If we had τ(i) (Y ) = Y then Y would be a summand of τ(i) (Xi), since Y is a

summand of Xi and τ(i) preserves finite direct sums (see Lemma 1.3.3).

Now

(C4) define X̃>i :=
⊕m+1

j=i+1Xj, 1 ≤ i ≤ m; and for Y an indecomposable summand

of Xi which is not a summand of Xi+1, and Y ′ an indecomposable module in

add X̃>i, assume that any morphism g : Y ′ −→ Y is such that Im g ⊆ τ(i) (Y ).

For the next proposition recall the definition of right minimal approximation in-

troduced in Subsection 1.2.2.

Proposition 5.2.2. Assume (C1)–(C4). Let Y be an indecomposable summand of

Xi which is not a summand of Xi+1, where 1 ≤ i ≤ m. Then the proper inclusion

τ(i) (Y ) Yι

is a right minimal add X̃>i-approximation of Y .

Proof. Any monic is trivially a right minimal morphism. By Lemma 5.2.1, ι is a

proper inclusion. Note that τ(i) (Y ) is in add X̃>i, as τ(i) (Y ) is a summand of Xi+1 =

τ(i) (Xi) (and this holds because Y is a summand of Xi and τ(i) preserves direct sums).

So it is enough to prove that

HomA

(
Y ′, τ(i) (Y )

)
HomA (Y ′, Y )

ι∗

is an epic for every indecomposable module Y ′ in add X̃>i. Consider an arbitrary

morphism g : Y ′ −→ Y . By assumption (C4), Im g ⊆ τ(i) (Y ). Thus the morphism g

factors through the inclusion ι, and this proves the claim.

Remark 5.2.3. Let X, X ′ be in modA and suppose we have an inclusion morphism

ι : X ′ −→ X which is a right add Θ-approximation of X for some class Θ of A-

modules. Recall the definition of trace introduced in Example 1.3.2. It is not difficult

to see that X ′ = Tr (Θ, X). The inclusion X ′ ⊆ Tr (Θ, X) follows from the fact

that X ′ is trivially generated by Θ, as it lies in add Θ. Moreover, any morphism

f : Y ′ −→ X, with Y ′ in add Θ factors through ι. This proves that Tr (Θ, X) ⊆ X ′.
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We apply this observation to our setup. Let Y be an indecomposable summand of

Xi which is not a summand of Xi+1, 1 ≤ i ≤ m. From Proposition 5.2.2, we see that

τ(i) (Y ) = Tr(X̃>i, Y ). This implies that in condition (C1), we may always assume

that τ(i) = Tr(X̃>i,−) (but this is sort of an a posteriori choice).

As we shall see in Section 5.3, the preradicals τ(i) will typically be hereditary

preradicals in modA (as in Definition 1.3.7). Although the preradicals τ(i) can always

be written in the form Tr (Θ,−) for a class of modules Θ in modA, they do not

always arise “in nature” in this way. We refer to Appendix B for natural ways of

constructing hereditary preradicals.

Corollary 5.2.4. Assume (C1)–(C4). Let Y be an indecomposable summand of Xi

and of Xj, where 1 ≤ i < j ≤ m. Then Y is a summand of Xk for i ≤ k ≤ j.

Proof. Suppose, by contradiction, that Y is not a summand of Xi+1. Then, by Propo-

sition 5.2.2, the proper inclusion

τ(i) (Y ) Yι

is a right add X̃>i-approximation of Y . As Y is also in add X̃>i, then 1Y factors

through ι, which leads to a contradiction.

Let Y be an indecomposable summand of X̃. By the previous result, there is a

unique i such that Y is a summand of Xi but not a summand of Xi+1. Furthermore,

note that the number i only depends on the isomorphism class of Y and not on the

module Y itself. In this case we say that Y is in the layer i of X̃, 1 ≤ i ≤ m. We

write ly (Y ) = i.

Let Ψ be a labelling set for the isomorphism classes of indecomposable summands

of X̃. Denote the indecomposable summands of X̃ by Yλ, λ ∈ Ψ, and write ly (λ) :=

ly (Yλ). The projective indecomposable Γ-modules are given by HomA(X̃, Yλ), and

we shall denote these by Pλ. Similarly, denote the simple factor of the Γ-module Pλ

by Lλ. Define a partial order � on Ψ by setting λ ≺ ν for λ, ν ∈ Ψ, if ly (λ) < ly (ν).

Remark 5.2.5. Note that λ and ν are not related in (Ψ,�) if and only if ly (λ) = ly (ν)

but λ 6= ν, that is, if and only if Yλ and Yν are in the same layer of X̃ but Yλ 6∼= Yν .

Proposition 5.2.6. Assume (C1)–(C4). Let Yλ, λ ∈ Ψ, be an indecomposable sum-

mand of X̃, and suppose that ly (λ) = i. Then

HomA(X̃, τ(i) (Yλ)) = Tr

(⊕
ν: ν�λ

Pν , Pλ

)
.

114



Proof. By Proposition 5.2.2, τ(i) (Yλ) is in add X̃>i, so HomA(X̃, τ(i) (Yλ)) is a direct

sum of projectives Pν , with ν � λ. In particular, HomA(X̃, τ(i) (Yλ)) is generated by

projectives Pν , ν � λ. This proves one of the inclusions. In order to prove the other

inclusion, consider an arbitrary morphism g∗ : Pν −→ Pλ, with ν � λ. We have

g∗ = HomA(X̃, g) for g : Yν −→ Yλ (see Proposition 1.2.4), with Yλ in the layer i of

X̃ and Yν in the layer j of X̃, for some j > i. By (C4), we must have Im g ⊆ τ(i) (Yλ).

Thus

Im g∗ ⊆ HomA(X̃, Im g) ⊆ HomA(X̃, τ(i) (Yλ)).

The inclusion Tr(
⊕

ν: ν�λ Pν , Pλ) ⊆ HomA(X̃, τ(i) (Yλ)) follows from this last observa-

tion.

From now onwards, suppose additionally that

(C5) for any nonisomorphic indecomposable summands Yλ, Yν of X̃, with i =

ly (λ) = ly (ν), every morphism g : Yλ −→ Yν is such that Im g ⊆ τ(i) (Yν).

We now recall the definition of a standardly stratified algebra (see for instance

[21]). Let B be an Artin C-algebra, and assume that (Φ,v) is a labelling poset for

the isomorphism classes of simple B-modules. Denote the projective indecomposable

B-modules by Pi, i ∈ Φ. Let Li be the simple factor of Pi, and let ∆ (i) be the

standard B-module with label i ∈ Φ, as defined in (1.2), Subsection 1.4.1. We say

that B is standardly stratified with respect to (Φ,v) if, for every i ∈ Φ,

1. Pi ∈ F (∆);

2. (Pi : ∆ (i)) = 1 and (Pi : ∆ (j)) 6= 0 implies that j w i.

According to Proposition 1.4.12, a standardly stratified algebra (B,Φ,v) is quasi-

hereditary if [∆ (i) : Li] = 1 for all i ∈ Φ. Moreover, a standardly stratified algebra

is quasihereditary if and only if it has finite global dimension (see [62]; see also [44]

for a similar result).

Proposition 5.2.7. Assume (C1)–(C5). The algebra Γ is standardly stratified with

respect to (Ψ,�). Moreover, if the module Yλ, λ ∈ Ψ, is such that ly (λ) = i, then

HomA(X̃, τ(i) (Yλ)) = Tr

(⊕
ν: ν 6�λ

Pν , Pλ

)
,

and this module is a direct sum of projective Γ-modules Pν, with ν � λ. In particular,

∆ (λ) = Pλ/HomA(X̃, τ(i) (Yλ)),

and proj. dim ∆ (λ) ≤ 1.
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Proof. We start by proving that

HomA(X̃, τ(i) (Yλ)) = Tr

(⊕
ν: ν 6�λ

Pν , Pλ

)
. (5.1)

By Proposition 5.2.6, it is enough to show that for a morphism g∗ : Pν −→ Pλ, with ν

and λ not related in (Ψ,�), we have that Im g∗ ⊆ HomA(X̃, τ(i) (Yλ)). Note that for

such a map g∗, we have g∗ = HomA(X̃, g), with g : Yν −→ Yλ, where ly (λ) = ly (ν),

but Yλ 6∼= Yν (see Remark 5.2.5). By assumption (C5), Im g is contained in τ(i) (Yλ).

So

Im g∗ ⊆ HomA(X̃, Im g) ⊆ HomA(X̃, τ(i) (Yλ)),

and the identity (5.1) holds.

Thus, by the definition of standard module, we have a short exact sequence

0 HomA(X̃, τ(i) (Yλ)) Pλ ∆ (λ) 0
ι∗ .

Suppose X̃ has m layers. If i = m, i.e. if Yλ is in the layer m of X̃, then τ(m) (Yλ) = 0

as this is a summand of τ(m) (Xm) = Xm+1 = 0 (see (C2)). So we have Pλ = ∆ (λ)

in this case, and Pλ satisfies conditions 1 and 2 in the definition of a standardly

stratified algebra. Suppose conditions 1 and 2 are satisfied for the modules Pν , with

ly (ν) > i = ly (λ). By Proposition 5.2.2, HomA(X̃, τ(i) (Yλ)) is a direct sum of

modules Pν , with ly (ν) > i. But then Pλ satisfies conditions 1 and 2 in the definition

of a standardly stratified algebra. This concludes the proof.

Finally, assume that the following holds:

(C6) any nonisomorphism g : Yλ −→ Yλ , with ly (λ) = i, is such that Im g ⊆
τ(i) (Yλ).

Recall that a quasihereditary algebra (B,Φ,v) is left strongly quasihereditary if

every standard module has projective dimension at most 1, or equivalently, if F (∇)

is closed under factor modules (see Definition 4.3.1).

Theorem 5.2.8. Assume (C1)–(C6). The algebra Γ is quasihereditary with respect to

(Ψ,�). In fact, (Γ,Ψ,�) is a left strongly quasihereditary algebra and proj. dimLλ ≤
ly(λ) for every λ ∈ Ψ. In particular, gl. dim Γ ≤ m, where m is the number of layers

of X̃.
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Proof. By Proposition 5.2.7, (Γ,Ψ,�) is a standardly stratified algebra, and we have

short exact sequences

0 HomA(X̃, τ(i) (Yλ)) Pλ ∆ (λ) 0
ι∗ , (5.2)

where ly (λ) = i, and HomA(X̃, τ(i) (Yλ)) is a direct sum of projective Γ-modules

Pν , with ν � λ. In particular the standard Γ-modules have projective dimension

not greater than 1. Consider a nonisomorphism g∗ : Pλ −→ Pλ. Note that g∗ =

HomA(X̃, g), where g : Yλ −→ Yλ is a nonisomorphism (see Proposition 1.2.4). By

assumption (C6), we have Im g ⊆ τ(i) (Yλ), so Im g∗ ⊆ HomA(X̃, τ(i) (Yλ)). Thus

Rad ∆ (λ) has no composition factors of the form Lλ. This proves that (Γ,Ψ,�) is a

left strongly quasihereditary algebra.

We now prove that proj. dimLλ ≤ i, where i = ly (λ). Note that the desired upper

bound for the global dimension of Γ will then follow by inductively applying this claim

and the Horseshoe Lemma (see [61, 2.2.8]). So suppose i = 1, i.e. assume that Yλ is in

layer 1 of X̃. In this case we have ∆ (λ) = Lλ, since λ is minimal in (Ψ,�) (and Γ is

quasihereditary). The exact sequence (5.2) implies that proj. dimLλ ≤ 1 in this case.

Suppose now that ly (λ) = i ≥ 2, and assume that proj. dimLν ≤ ly (ν), for every ν

such that ly (ν) < i. Since all composition factors of Rad ∆ (λ) are of the form Lν

with ν ≺ λ (i.e. with ly (ν) < ly (λ) = i), we have that proj. dim Rad ∆ (λ) ≤ i− 1 by

the induction hypothesis (using the Horseshoe Lemma). Note that the exact sequence

(5.2) gives rise to the exact sequence

0 HomA(X̃, τ(i) (Yλ)) RadPλ Rad ∆ (λ) 0 , (5.3)

where HomA(X̃, τ(i) (Yλ)) is a projective module according to Proposition 5.2.7. Since

proj. dim Rad ∆ (λ) ≤ i− 1, then proj. dim RadPλ ≤ i− 1 by the Horseshoe Lemma.

Hence proj. dimLλ ≤ i = ly (λ).

5.3 Applications

The algebra SA introduced in Subsection 3.4.1, the quasihereditary algebras described

by Iyama in [39], and the cluster-tilted algebras studied in [32], [31] and [40] are all

examples of left strongly quasihereditary algebras. In this section we shall see that

these examples fit into the construction outlined in Section 5.2.
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5.3.1 The ADR algebra and generalisations

Let X1 be in modA, and assume that any pair of nonisomorphic indecomposable

summands of X1 have nonisomorphic simple socle. Without loss of generality we

may suppose that X1 is basic, i.e. we may assume that X1 =
⊕n

j=1 Yj where each Yj

has simple socle and SocYj 6∼= SocYk for j 6= k.

Suppose that X1 has Loewy length m and define τ(i) := Socm−i(−), 1 ≤ i ≤ m.

Using this data and the notation in Section 5.2 observe that assumptions (C1), (C2)

and (C3) are satisfied. In this particular case X̃ has m layers.

In order to check that assumption (C4) holds, let Y be an indecomposable sum-

mand of Xi which is not a summand of Xi+1, and let Y ′ be an indecomposable

summand of Xj, for some j > i. I.e., suppose that LL(Y ) = m − i + 1 and that

LL(Y ′) < m− i+ 1. Given a map g : Y ′ −→ Y we have that LL(Im g) < m− i+ 1,

so Im g ⊆ Socm−i Y = τ(i) (Y ).

To show that assumption (C5) is satisfied, consider a morphism g : Yλ −→ Yν ,

with ly (λ) = ly (ν) = i but Yλ 6∼= Yν . This implies that both Yλ and Yν have Loewy

length m− i+ 1, but they have distinct simple socle. In this situation we must have

LL(Im g) < m− i+ 1, thus Im g ⊆ Socm−i Y = τ(i) (Y ).

Finally, consider a nonisomorphism g : Yλ −→ Yλ, with ly (λ) = i. Again, we

have that LL(Yλ) = m − i + 1, but LL(Im g) < m − i + 1. Hence Im g ⊆ τ(i) (Y ), so

assumption (C6) holds.

By Theorem 5.2.8, the algebra Γ = EndA(X̃)op obtained in this case (where X̃ =⊕m
i=1 SociX1), is left strongly quasihereditary, and gl. dim Γ ≤ m = LL(X1).

If A is an Artin C-algebra and if X1 is the direct sum of a complete set of injective

indecomposable A-modules, then, using the notation in Section 5.2, the corresponding

algebra Γ = EndA(X̃)op is Morita equivalent to SA ∼= (RAop)
op, where RAop is the ADR

algebra of Aop (see Subsection 3.4.1).

Remark 5.3.1. LetX1 ∈ modA be a direct sum of modules with simple top. According

to [47], the algebra EndA(
⊕

i: i≥1X1/RadiX1)op is quasihereditary. By dualising this

result, we deduce that the algebra EndA(
⊕

i: i≥1 SociX1)op is quasihereditary when

the module X1 is a direct sum of modules with simple socle. We have just shown

that the algebra EndA
(⊕

i: i≥1 SociX1

)
op is in fact left strongly quasihereditary if no

nonisomorphic indecomposable summands of X1 have the same simple socle.
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5.3.2 Iyama’s construction

Recall that the representation dimension of an Artin algebra A, rep. dimA, is the

minimal possible global dimension of the endomorphism algebra of an A-module which

is both a generator and a cogenerator of modA (see Subsection 4.2.4).

In [39], Iyama showed that every Artin algebra A has finite representation dimen-

sion, thus answering a question with more than 30 years, posed by Auslander. Indeed,

Iyama established a much stronger result – he proved that every module X1 ∈ modA

has a complement X ′ such that Γ = EndA (X1 ⊕X ′) op is a quasihereditary algebra.

By taking X1 to be a generator and cogenerator of modA, the corresponding algebra

Γ is quasihereditary, so Γ has finite global dimension and rep. dimA < ∞. In [51],

Ringel observed that the algebras Γ constructed by Iyama are in fact left strongly

quasihereditary.

In this subsection we show that Iyama’s endomorphism algebra Γ fits into the

setup described in Section 5.2. Consider the functors RadA(−,−) and τRadA(M,−)

defined in Appendix B. For M,N ∈ modA, we have that

τRadA(M,−) (N) =
∑

f : f∈RadA(M,N)

Im f.

The underlying algebra A does not need to be an Artin algebra, i.e. we shall assume

that A is an arbitrary C-algebra.

Following Iyama’s construction in [39] (see also [51]), pick a module X1 in modA

and consider the preradical τ(1) := τRadA(X1,−). For Xi 6= 0, define recursively Xi+1 :=

τ(i) (Xi), where τ(i) := τRadA(Xi,−). So

Xi+1 = τRadA(Xi,−) (Xi) =
∑

f : f∈RadA(Xi,Xi)

Im f. (5.4)

Note that Xi+1 is a proper submodule of Xi, since Xi+1 = Rad(EndA (Xi))Xi (that is,

Xi+1 is the radical of Xi as an EndA (Xi)-module). This produces a chain of proper

A-submodules, which has to terminate because X1 has finite length. Let m be largest

integer such that Xm 6= 0. Note that we are in the setup described in conditions (C1),

(C2) and (C3), and in this particular situation X̃ has m layers.

Next, we check that assumptions (C4), (C5) and (C6) are satisfied. This will

follow [51, §2] quite closely.

To see that assumption (C4) is satisfied let Y be an indecomposable summand

of Xi which is not a summand of Xi+1, and let Y ′ be an indecomposable summand

of Xj, for some j > i. Consider a map g : Y ′ −→ Y . By (5.4), Xk+1 = τ(k) (Xk) is
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generated by Xk for every k, 1 ≤ k ≤ m (see also Lemma B.4, part 3). So we have

maps

Xi
k1 Xi+1

k2 Y ′ Y
π1 π2 g

.

Note that g ◦ π2 ◦ π1 ∈ RadA(Xi
k1 , Y ), otherwise the map

Y ′′ Xi
k1 Xi+1

k2 Y ′ Y
π1 π2 g

would be an isomorphism for some indecomposable summand Y ′′ of Xi, and conse-

quently Y would be a summand of Xi+1 – a contradiction. So we have that

Im g = Im(g ◦ π2 ◦ π1) ⊆ τRadA(Xi
k1 ,−) (Y ) = τRadA(Xi,−) (Y ) = τ(i) (Y )

(for the penultimate equality see part 5 of Lemma B.4).

We now check (simultaneously) that assumptions (C5) and (C6) are satisfied. We

use the notation introduced in Section 5.2. Consider a nonisomorphism g : Yλ −→ Yν ,

with ly (λ) = ly (ν) = i. Note that Yλ is a summand of Xi, so we have a map

Xi Yλ Yν
π g

.

The map g◦π belongs to RadA(Xi, Yν), otherwise g would have to be an isomorphism,

which is a contradiction. Hence

Im g = Im(g ◦ π) ⊆ τRadA(Xi,−) (Yν) = τ(i) (Yν) .

By Theorem 5.2.8, the corresponding endomorphism algebra Γ = EndA(X̃)op,

where X̃ =
⊕m

i=1Xi, is left strongly quasihereditary and gl. dim Γ ≤ m. This gives

another proof of Iyama’s theorem in [39], which basically mimics Ringel’s strategy in

[51].

Remark 5.3.2. Suppose A is an Artin C-algebra of finite type. In this case, we may

choose the module X1 in this construction to be the direct sum of all indecomposable

A-modules (up to isomorphism). As observed in [51], the left strongly quasihereditary

algebra Γ = EndA(X̃)op produced in this case is Morita equivalent to EndA (X1) op,

the Auslander algebra of A.

5.3.3 Cluster-tilted algebras associated with reduced words
in Coxeter groups

Geiß–Leclerc–Schröer ([32], [31]) and Iyama–Reiten [40] have shown there is a cluster-

tilting category Cω associated to every preprojective algebra A and every element ω in
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the Coxeter group of A. Moreover, to each reduced expression of the element ω there

is a corresponding cluster-tilted algebra Γ. As proved in [40] and [32], the algebra

Γ is actually a strongly quasihereditary algebra. We show that this class of algebras

fits into the construction described in Section 5.2. First, we need to introduce some

notation.

Let Q = (Q0, Q1) be a finite connected quiver without oriented cycles. As usual,

Q0 = {1, . . . , n} denotes the set of vertices and Q1 is the set of arrows. Following

Gel’fand and Ponomarev ([33]), let

A := KQ/〈c〉

be the associated preprojective algebra. Here K is an algebraically closed field, KQ

is the path algebra of the double quiver of Q (which is obtained by adding to each

arrow α in Q1 an arrow α∗ pointing in the opposite direction), and c is the element

c =
∑
α∈Q1

(α∗α− αα∗) .

Let WQ be the Coxeter group of Q (see [32, Section 4.1], [43]). For example, if

Q is of type An, then WQ is the symmetric group Σn+1. In the general case WQ

has special generators s1, . . . , sn, where si is associated to the vertex i of Q. Given

ω ∈ WQ we say that j = (jm, . . . , j2, j1), 1 ≤ ji ≤ n, is a reduced expression for ω if

ω = sjm · · · sj2sj1 and the integer m is minimal (in the sense that, if ω = skl · · · sk2sk1 ,

1 ≤ ki ≤ n, then l ≥ m).

Let Lj be the simple A-module associated with the vertex j of Q and denote its

injective hull by Qj, j = 1, . . . , n. The modules Qj do not usually lie in modA,

i.e. they may be infinite-dimensional over K.

Fix a reduced expression j = (jm, . . . , j2, j1) of some element ω ∈ WQ. We may

associate to j a sequence of (hereditary) preradicals τ(i) in ModA, constructed in the

following way. Define δ(i) := Tr (Lji ,−), 1 ≤ i ≤ m. Note that for X in ModA,

δ(i)(X) is largest semisimple submodule of X whose summands are all isomorphic to

Lji . It is easy to check that δ(i) is a hereditary preradical in ModA (recall Definition

1.3.7). For 0 ≤ i < m, set τ(i) := δ(1) • δ(2) • · · · • δ(m−i) and τ(m) := 0 (remember the

operation • defined in Subsection 1.3.2). Note that τ(i) is a hereditary preradical in

ModA as each δ(i) is hereditary (see Subsection 1.3.2).

Following [32, §2.4], define X1 := τ(0)(
⊕n

j=1 Qj) =
⊕n

j=1 τ(0) (Qj). The A-module

X1 is finitely generated over C – each socle layer of Qj is composed of a semisimple

module in modA as the quiver Q has a finite number of arrows. Moreover, X1 is a
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direct sum of modules with pairwise distinct simple socle. Note that τ(0) (Qj) = 0 if

and only if j 6= ji for every i ∈ {1, . . . , n}. The modules X1 and Xi+1 := τ(i)(Xi),

1 ≤ i ≤ m, are in the setup of conditions (C1) and (C2) in Section 5.2.

In order to show that the conditions (C3) to (C6) are satisfied, two preliminary

lemmas are needed.

Lemma 5.3.3. For 1 ≤ i ≤ m, we have that τ(i−1) = τ(i) • δ(m−i+1) and Xi+1 =

τ(i)(
⊕n

j=1 Qj).

Proof. The first claim is clear. We prove that Xi+1 = τ(i)(
⊕n

j=1 Qj) for 1 ≤ i ≤
m. Note that identity holds for i = 0 by the definition of X1. Moreover, since

τ(i−1) = τ(i) • δ(m−i+1), then τ(i) ≤ τ(i−1), using the notation in Subsection 1.3.2. So,

for 1 ≤ i ≤ m, we have

Xi+1 = τ(i) (Xi) = Xi ∩ τ(i)

(
n⊕
j=1

Qj

)

= τ(i−1)

(
n⊕
j=1

Qj

)
∩ τ(i)

(
n⊕
j=1

Qj

)
= τ(i)

(
n⊕
j=1

Qj

)
.

The second equality is due to the fact that τ(i) is a hereditary preradical, the third

equality uses induction, and the last equality uses that τ(i) is a subfunctor of τ(i−1).

Lemma 5.3.4. For 1 ≤ i ≤ m, the module Xi+1 has exactly the same decom-

position as Xi as a direct sum of indecomposable modules, except that the unique

summand of Xi with simple socle Ljm−i+1
, Y = τ(i−1)

(
Qjm−i+1

)
, is replaced by

τ(i)(Y ) = τ(i)

(
Qjm−i+1

)
in Xi+1. The module Xi+1 is properly contained in Xi.

Proof. Consider i, 1 ≤ i ≤ m. By Lemma 5.3.3, we have that

Xi = τ(i−1)

(
n⊕
j=1

Qj

)
=

n⊕
j=1

τ(i−1) (Qj)

=

 n⊕
j=1,

j 6=jm−i+1

τ(i) • δ(m−i+1) (Qj)

⊕ τ(i−1)

(
Qjm−i+1

)
.

For j 6= jm−i+1, we have δ(m−i+1) (Qj) = 0, so τ(i) • δ(m−i+1) (Qj) = τ(i) (Qj), by the

definition of the operation •. Therefore,

Xi =

 n⊕
j=1,

j 6=jm−i+1

τ(i) (Qj)

⊕ τ(i−1)

(
Qjm−i+1

)
.
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By Lemma 5.3.3, Xi+1 =
⊕n

j=1 τ(i)(Qj). This proves the first claim.

In order to show that Xi+1 is a proper submodule of Xi, one needs to check that

the module τ(i)

(
Qjm−i+1

)
is a proper submodule of τ(i−1)

(
Qjm−i+1

)
. For this we need

to use that j = (jm, . . . , j2, j1) is a reduced word in WQ. It should be possible to prove

that τ(i)

(
Qjm−i+1

)
6= τ(i−1)

(
Qjm−i+1

)
directly, using the Coxeter presentation of WQ,

bearing in mind how this presentation connects to the morphology of the the quiver

Q, and hence to the structure of the modules Qj ∈ ModA. This is proved in Section

III.1 of [12] (see Proposition III.1.11 – in here the authors use a dual construction,

i.e. instead of taking submodules of the injective indecomposable modules Qj, they

take factor modules of the corresponding projective indecomposable modules).

From Lemma 5.3.4 we conclude that A satisfies assumption (C3). This result also

implies that, for each i, 1 ≤ i ≤ m, there is a unique indecomposable summand of

Xi which is not a summand of Xi+1, namely the module τ(i−1)

(
Qjm−i+1

)
. In other

words, there is a unique indecomposable module in each layer of X̃ =
⊕m

i=1Xi.

To show that (C4) holds, consider a map g : Y ′ −→ Y , with Y an indecomposable

summand of Xi which is not a summand of Xi+1 and Y ′ an indecomposable module

in add X̃>i. Note that

Y ′ = Y ′ ∩Xi+1 = Y ′ ∩ τ(i) (Xi) = τ(i) (Y ′) .

Here the first identity is due to the fact that Y ′ is contained in Xi+1. For the last

equality note that Y ′ ⊆ Xi and that τ(i) is a hereditary preradical. Because τ(i) is a

preradical, then the image of the map g|τ(i)(Y ′) = g is contained in τ(i) (Y ). That is,

Im g ⊆ τ(i) (Y ).

Assumption (C5) is trivially satisfied since there is just one indecomposable mod-

ule in each layer of X̃.

To check that assumption (C6) holds, consider a nonisomorphism g : Y −→ Y ,

with ly (Y ) = i. We must have Y = τ(i−1)

(
Qjm−i+1

)
. In particular, SocY = Ljm−i+1

and τ(i−1)(Y ) = Y (as τ(i−1) is idempotent – see Lemma 1.3.9 and Definition 1.3.4).

Because g is a nonisomorphism, there is an epic

Y/Ljm−i+1
Im g.h

Note that

Y/Ljm−i+1
= Y/δ(m−i+1)(Y ) = τ(i−1)(Y )/δ(m−i+1)(Y ) = τ(i) • δ(m−i+1)(Y )/δ(m−i+1)(Y )

= τ(i)

(
Y/Ljm−i+1

)
,
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where the last identity is due to the definition of •. This implies that the image of

h|τ(i)(Y/Ljm−i+1) = h is contained in τ(i) (Im g). That is we must have τ(i) (Im g) = Im g.

As a consequence we get that Im g ⊆ τ(i) (Y ).

This proves that the left strongly quasihereditary algebra investigated in [32],

[31] and also in [40] fits into the construction outlined in Section 5.2. By applying

Theorem 5.2.8 to the setup described in this subsection, we get a new proof of the fact

that algebra Γ = EndA(X̃)op, X̃ =
⊕m

i=1 Xi, is left strongly quasihereditary. Note

that the global dimension of Γ is not greater than the length m of the chosen reduced

word in WQ. As we shall see in Section 5.4, the algebra Γ obtained in this case is

actually a LUSQ algebra (recall the definition of LUSQ algebra in Section 4.3).

As investigated in [32], [31], [40], [41], the algebra Γ can be realised as a cluster-

tilted algebra. Define Cω to be the category of quotients of modules in add X̃ – it

can be proved that Cω does not depend on the choice of a reduced expression for ω.

It turns out that the category Cω is a Frobenius subcategory of modA (see [35]) and

the Cω-projective-injective modules are the indecomposable summands of X1. The

corresponding stable category Cω is a triangulated 2-Calabi-Yau category and add X̃

embedds in Cω as a 2-cluster-tilting subcategory in the sense of Iyama and Yoshino

(see [32], [31], [40], and [41]).

Remark 5.3.5. Note that we barely used any data specific to the preprojective algebra

when checking that Γ fits into the setup of Section 5.2. In fact, we can reproduce this

particular construction in a general setting.

Consider a C-algebra A and let L1, . . . , Ln be pairwise nonisomorphic simple mod-

ules. Let X0 =
⊕n

j=1 Q̂j, where each Q̂j is in ModA and has simple socle Lj. Consider

a sequence j = (jm, . . . , j2, j1), with 1 ≤ ji ≤ n. Then we may define the chain of

hereditary preradicals τ(m) ≤ · · · ≤ τ(1) ≤ τ(0) as before. If X1 := τ(0) (X0) is in modA

and the inclusion of τ(i)(Q̂jm−i+1
) in τ(i−1)(Q̂jm−i+1

) is proper for every 0 ≤ i ≤ m then

assumptions (C1) to (C6) are satisfied (and the arguments are exactly as the ones

used previously). By Theorem 5.2.8, the resulting algebra Γ = EndA(X̃)op is then

left strongly quasihereditary with gl. dim Γ ≤ m.

Next, we compute an elementary example of a cluster-tilted algebra Γ, with the

purpose of illustrating the previous construction and the statement of Theorem 5.2.8.

Example 5.3.6. Let A be the preprojective algebra of type A4. So A is the quiver

algebra of

Q =
1◦ 2◦ 3◦ 4◦

α1

α∗1

α2

α∗2

α3

α∗3

,
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bound by the relations α∗1α1 = 0, α1α
∗
1 = α∗2α2, α2α

∗
2 = α∗3α3 and α3α

∗
3 = 0.

The injective A-modules (which are in fact projective-injective modules) are given

by

Q1 =

4

3

2

1

, Q2 =

3

2 4

1 3

2

, Q3 =

2

1 3

2 4

3

, Q4 =

1

2

3

4

.

Consider the reduced word j = (2, 3, 1). Using the previous notation, we have

m = 3, j1 = 1, j2 = 3 and j3 = 2. Consequently, δ(1) = Tr (L1,−), δ(2) = Tr (L3,−)

and δ(3) = Tr (L2,−). Set X0 =
⊕4

j=1 Qj.

We have that τ(2)(X0) = δ(1)(X0) = L1. So X3 = L1 (see Lemma 5.3.3).

Note that δ(2)(X0) = L3 and δ(1)(X0/δ(2)(X0)) = L1. So δ(1) • δ(2)(X0) = L1 ⊕ L3.

That is τ(1)(X0) = L1 ⊕ L3 = X2 (see Lemma 5.3.3).

Finally, δ(3)(X0) = L2 and δ(2)(X0/δ(3)(X0)) = L3 ⊕ L3. Thus

δ(2) • δ(3)(X0) =
3

2
⊕ L3.

Now δ(1)(X0/δ(2) • δ(3)(X0)) = L1 ⊕ L1, hence

δ(1) • δ(2) • δ(3)(X0) = L1 ⊕
1 3

2
⊕ L3 = τ(0)(X0) = X1.

The module X̃ = X1 ⊕X2 ⊕X3 has 3 indecomposable summands, up to isomor-

phism. The summand

1 3

2

is in layer 1 of X̃, and we shall denote it by Y1,1. The summand L3 is in layer 2 of

X̃, and we will denote it by Y2,1. The indecomposable module L1 is in layer 3 of X̃,

and it shall be represented by Y3,1.

Set Ψ = {(1, 1), (2, 1), (3, 1)}. According to Theorem 5.2.8, the algebra Γ =

EndA(X̃)op is (left strongly) quasihereditary with respect to the poset (1, 1) ≺ (2, 1) ≺
(3, 1), where the label (i, 1) corresponds to the projective indecomposable Γ-module

Pi,1 = HomA(X̃, Yi,1).
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The algebra Γ is Morita equivalent to its basic version. That is, Γ is Morita

equivalent to Γ′ = EndA(Y(1,1) ⊕ Y(2,1) ⊕ Y(3,1))
op, and the algebra Γ′ is isomorphic to

the path algebra of the quiver

(3,1)
◦

(1,1)
◦

(2,1)
◦ .

The projective indecomposable Γ′-modules can be represented as

P1,1 = L1,1 = ∆(1, 1), P2,1 =
(2, 1)

(1, 1)

= ∆(2, 1), P2,1 =
(3, 1)

(1, 1)

= ∆(3, 1).

Note that every standard module is projective, so Γ′ is a left strongly quasihereditary

algebra with respect to (Ψ,�) (see Definition 4.3.1), as predicted by Theorem 5.2.8.

The injective indecomposable Γ′-modules are given by

Q1,1 =
(3, 1) (2, 1)

(1, 1)

, Q2,1 = L2,1, Q3,1 = L3,1.

Observe that all the costandard modules are simple, i.e. ∇(i, 1) = Li,1. As a conse-

quence, the projective modules Pi,1 lie in F (∆) ∩ F (∇), which proves that Γ′ is in

fact a LUSQ algebra with respect to (Ψ,�) (see Definition 5.4.1). This is hinting at

a general phenomenon which will be discussed in the next section.

5.4 Ultra strongly quasihereditary endomorphism

algebras

In this section we provide sufficient conditions for which the endomorphism algebras

Γ = EndA(
⊕m

i=1Xi)
op (obtained by the method described in Section 5.2) are LUSQ

algebras. The slogan for this section should be the following: if the initial module

X1 “behaves like” an injective module, then the corresponding (left strongly quasi-

hereditary) algebra (Γ,Ψ,�) is a LUSQ algebra. For ease of reference, we restate the

definition of LUSQ algebra, which is dual to that of a RUSQ algebra (see Subsection

2.5.1).

Definition 5.4.1. Let (B,Φ,v) be a left strongly quasihereditary algebra (as in

Definition 4.3.1). The algebra (B,Φ,v) is a left ultra strongly quasihereditary algebra

(LUSQ algebra, for short) if, for every i ∈ Φ, Pi belongs to F (∇) whenever ∇ (i) is

a simple module.

This property is preserved under Morita equivalence.
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5.4.1 Setup

Using the notation introduced in Section 5.2, let X1 be a module in modA such

that any pair of nonisomorphic indecomposable summands of X1 have nonisomorphic

simple socle. Without loss of generality we may suppose that X1 is basic, that is,

we can assume that X1 =
⊕n

i=1 Yi,1 where each Yi,1 has simple socle and SocYi,1 6∼=
SocYk,1 for i 6= k. Suppose further that there are preradicals τ(1), . . . , τ(m), so that

assumptions (C1) to (C6) hold for this set of data. In this special situation, the

indecomposable summands of the module X̃ are isomorphic to particular submodules

of the modules Yi,1 because the modules Yi,1 have simple socle. That is, all the

summands of X̃ are of the form Yi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ li (for some li ∈ Z>0), so

that for each i there is a filtration

0 ⊂ Yi,li ⊂ · · · ⊂ Yi,2 ⊂ Yi,1,

and the exact sequences (5.2) are of the form

0 Pi,j+1 Pi,j ∆ (i, j) 0
ι∗ ,

with Pi,j = HomA(X̃, Yi,j) (formally, Yi,j+1 = τ(ly(i,j))(Yi,j)).

Throughout the rest of this chapter we shall assume that the module X1 is as

described above (i.e. X1 =
⊕n

i=1 Yi,1, each Yi,1 has simple socle and SocYi,1 6∼= SocYk,1

for i 6= k), and (Γ,Ψ,�) will always denote a left strongly quasihereditary algebra

which is obtained under these circumstances. We may assume that

Ψ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ li}.

In this special case, the projective indecomposable Γ-modules have a unique ∆-

filtration,

0 ⊂ Pi,li ⊂ · · · ⊂ Pi,2 ⊂ Pi,1,

and the algebra Γ is a WLUSQ algebra, as investigated in Section 4.3.

5.4.2 Results

It is useful to call to mind the definition of a WLUSQ algebra (see Subsection 4.3.1),

and the basic results about these algebras deduced in Subsection 4.3.2.

As seen in Example 4.3.10, a WLUSQ algebra (B,Φ,v) does not necessarily satisfy

the condition

(♦) ∇ (i, j) /Li,j ∼= ∇ (i, j − 1), for all (i, j) ∈ Φ (where ∇ (i, 0) := 0).
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In particular, WLUSQ algebras are not usually LUSQ, and the same conclusions

apply to the (WLUSQ) algebras (Γ,Ψ,�) just described.

The following straightforward lemma will be used later on.

Lemma 5.4.2. Let (B,Φ,v) be a WLUSQ algebra, and suppose that B satisfies

property (♦). Then the costandard B-modules are uniserial, and ∇ (i, j) has com-

position factors Li,j, Li,j−1 . . . , Li,1, ordered from the socle to the top. Given M in

F (∇), the number of costandard modules appearing in a ∇-filtration of M is given

by
∑n

i=1[M : Li,1], and TopM is a direct sum of modules of type Lx,1.

Proof. Only the last assertion needs to be justified. Let M be in F (∇). Since F (∇)

is closed under factor modules (see Lemma 4.3.4), then TopM is a ∇-good module.

This implies that TopM is a direct sum of modules of type Lx,1.

The next result gives sufficient conditions for the property (♦) to hold for the

WLUSQ algebras (Γ,Ψ,�) introduced in Subsection 5.4.1.

Proposition 5.4.3. Using the previous notation (as in Subsection 5.4.1), suppose

that, for 1 ≤ i ≤ n, every monic f : Yi,li −→ Yi,1 factors through the inclusion ι of

Yi,li in Yi,1 as f = f ′◦ι for some map f ′. Then the WLUSQ algebra (Γ,Ψ,�) satisfies

property (♦). In particular, the algebra (Γ,Ψ,�) satisfies property (♦) if one of the

following conditions is satisfied:

1. the ring of scalars is an algebraically closed field, i.e. A is a K-algebra and K

is an algebraically closed field;

2. the modules Yi,1, 1 ≤ i ≤ n, are injective;

3. each module Yi,1, 1 ≤ i ≤ n, is a characteristic submodule1 of its injective hull.

Proof. Consider the inclusion ι : Yi,li −→ Yi,1 and apply the functor HomA(−, X̃) to

this morphism. We get the map

HomA(Yi,1, X̃) HomA(Yi,li , X̃)

Im ι∗

ι∗

. (5.5)

1See Subsection 1.3.1 for the definition of characteristic submodule.
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Note that Im ι∗ is a Γop-submodule of HomA(Yi,li , X̃). Write P ′i,j := HomA(Yi,j, X̃).

The modules P ′i,j, (i, j) ∈ Ψ, form a complete list of projective indecomposable Γop-

modules. Write L′i,j := TopP ′i,j. By the diagram (5.5), Im ι∗ is a Γop-submodule of

P ′i,li with simple top L′i,1.

We claim that the composition factor L′i,1 appears exactly once in the composition

series of P ′i,li , namely in the top of Im ι∗. For this consider a nonzero map f∗ : P ′i,1 −→
P ′i,li . We have that f∗ = HomA(f, X̃) for some f : Yi,li −→ Yi,1 in modA. Proposition

5.2.2 implies that the inclusion morphism ι : Yi,li −→ Yi,1 is a right (minimal) add X̃>k-

approximation of Yi,1, where k := ly(i, li − 1) (define ly(i, 0) := 0). To see this,

note that ι is obtained by composing the inclusion morphisms Yi,j+1 −→ Yi,j, and

each of these morphisms is a right minimal add X̃>ly(i,j)-approximation (as Yi,j+1 =

τ(ly(i,j))(Yi,j)). Since ι is a right add X̃>k-approximation of Yi,1, then f = ι◦s, for some

map s : Yi,li −→ Yi,li . If s is not an isomorphism, then condition (C6) implies that

s = 0 (there is no submodule of Yi,li in a layer above ly(i, li)), and hence f∗ = 0, which

cannot happen. So s has to be an isomorphism, and consequently f is a monic. By

the assumption in the statement of the lemma, there is a morphism f ′ : Yi,1 −→ Yi,1

such that f = f ′ ◦ ι. Since all the modules involved in this composition have the

same socle, and since the maps f and ι are monic, then f ′ has to be monic too.

As f ′ is an endomorphism, then f ′ is a bijection. The identity f = f ′ ◦ ι implies

that Im f∗ = Im ι∗. Therefore the composition factor L′i,1 appears exactly once in the

composition series of P ′i,li (namely in the top of Im ι∗).

Let D be the standard duality for Γop (see Subsection 1.2.1.1). We have that

D(P ′i,li) = Qi,li (so Qi,li is the injective Γ-module with socle Li,li), and [Qi,li : Li,1] = 1

because [P ′i,li : L′i,1] = 1. Note that ∇ (i, li) ⊆ Qi,li , and by Lemma 4.3.6, [∇ (i, li) :

Li,1] 6= 0. This implies that [∇ (i, li) : Li,1] = 1.

Recall that F (∇) is closed under quotients since Γ a left strongly quasiheredi-

tary algebra (Theorem 5.2.8). If li = 1, then ∇ (i, li) = ∇ (i, 1) = Li,1 by Lemma

4.3.6. Suppose now that li > 1. Note that ∇ (i, li) /Li,li is a ∇-good module.

Since [∇(i, li)/Li,li : Li,1] = 1, Lemma 4.3.6 forces ∇ (i, li) /Li,li to be isomorphic

to ∇ (i, li − 1). By proceeding inductively in this fashion, we see that ∇ (i, j) /Li,j ∼=
∇ (i, j − 1), where ∇ (i, 0) := 0. This proves the first part of the proposition.

Next, we show Γ satisfies the lifting property in the statement of the lemma if one

of the properties 1, 2 or 3 is satisfied.

First suppose that condition 1 holds, i.e. assume that the underlying ring of scalars

is an algebraically closed field. Given a monic f : Yi,li −→ Yi,1, we have that f = ι ◦ s
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for some map s : Yi,li −→ Yi,li : this is because ι is a right (minimal) add X̃>k-

approximation of Yi,1, where k = ly(i, li−1) (see the first part of the proof). Condition

(C6) implies that EndA (Yi,li) is a division algebra. Since K is algebraically closed

then EndA (Yi,li)
∼= K. So the map s is a scalar multiple of 1Yi,li . Thus f = (k1Yi,1)◦ ι,

where s = k1Yi,li and k ∈ K. Hence the lifting property holds in this case.

Suppose now that condition 2 holds. By the injectivity of Yi,1, every morphism

f : Yi,li −→ Yi,1 factors through the inclusion ι as f = f ′ ◦ ι for some map f ′.

Finally, suppose that condition 3 holds, i.e. assume that each Yi,1 is a characteristic

submodule of its injective hull, Q0 (Yi,1), for 1 ≤ i ≤ n. Using the injectivity of

Q0 (Yi,1), we conclude the following. Given a morphism f : Yi,li −→ Yi,1, we have

that ι′ ◦ f = f ′ ◦ ι′ ◦ ι for some map f ′ : Q0 (Yi,1) −→ Q0 (Yi,1), where ι denotes the

inclusion of Yi,li in Yi,1, and ι′ denotes the inclusion of Yi,1 in Q0 (Yi,1). Since Yi,1 is a

characteristic submodule of Q0 (Yi,1), then Im(f ′ ◦ ι′) ⊆ Yi,1. But then the morphism

f factors through ι as f = f ′′ ◦ ι for some map f ′′.

Remark 5.4.4. Note that the module X1 in Subsection 5.3.1 satisfies the conditions

described in Subsection 5.4.1. Therefore the algebra Γ constructed in Subsection

5.3.1 (using the socle series of X1) is a WLUSQ algebra. Suppose additionally that

the indecomposable summands Yi,1 of X1 are injective (or, more generally, that the

summands Yi,1 are characteristic submodules of their injective hulls). Then, by Propo-

sition 5.4.3, the WLUSQ algebra Γ constructed in Subsection 5.3.1 satisfies property

(♦).

Observe that the module X1 used in Subsection 5.3.3 is also in the setup of Subsec-

tion 5.4.1. Therefore the corresponding cluster-tilted algebra Γ is a WLUSQ algebra.

Proposition 5.4.3 implies that the cluster-tilted algebra Γ satisfies property (♦), as

the underlying ring of scalars is an algebraically closed field2.

We may also apply Iyama’s construction (see Subsection 5.3.2) to a module X1 =⊕n
i=1 Yi,1 such that each Yi,1 has simple socle and Yi,1 6∼= Yk,1 for i 6= k (as described

in Subsection 5.4.1). If conditions 1, 2 or 3 in Proposition 5.4.3 hold for X1, then we

obtain a WLUSQ algebra Γ which satisfies property (♦).

We would like to use the general construction outlined in Section 5.2 to produce

LUSQ algebras. With this in mind, consider the following condition regarding the

summands Yi,j of the initial module X1:

2In this situation the indecomposable summands of X1 actually satisfy condition 3 in Proposition
5.4.3, which is independent of the field.

130



(D) every morphism Yi,j −→ Yk,1 factors through the inclusion of Yi,j in Yi,1, for

every i, k and j (1 ≤ i, k, i, k ≤ n and 1 ≤ j ≤ li).

The main goal of this section is to prove the following result.

Theorem 5.4.5. Using the previous notation (as in Subsection 5.4.1), assume that

condition (D) holds. Then the corresponding algebra (Γ,Ψ,�) is a LUSQ algebra. In

particular, Γ satisfies property (♦) and the Γ-module Pi,1 is isomorphic to T (i, li) for

1 ≤ i ≤ n.

Observe that the quasihereditary structure of a LUSQ algebra has been described

in this thesis. To be precise, we know how the costandard and the tilting modules

over a LUSQ algebra look like (see Proposition 4.3.2 and Theorem 4.3.3). Before

proving Theorem 5.4.5, we discuss some of its consequences.

Remark 5.4.6. Note that condition (D) is satisfied if, for instance, every Yi,1 is an

injective (indecomposable) module. So the claim of Theorem 5.4.5 holds in general if

the inicial module X1 is an injective module in modA.

In particular, Theorem 5.4.5 holds for the algebra Γ constructed in Subsection 5.3.1

if the summands Yi,1 of X1 are injective. By taking A to be an Artin algebra and X1

to be the sum of all injective indecomposable A-modules, we get that SA ∼= (RAop)
op

is a LUSQ algebra (which had already been deduced in Subsection 3.4.1).

Theorem 5.4.5 also holds for the algebras Γ obtained by applying Iyama’s con-

struction (see Subsection 5.3.2) to an injective module X1 in modA.

Consider now the cluster-tilted algebra Γ described in Subsection 5.3.3. The lifting

property (D) is also satisfied in this case because the summands Yi,1 of X1 are Cω-

projective-injective objects in the Frobenius category Cω, which contains add X̃ (see

Subsection 5.3.3). Consequently, the cluster-tilted algebra Γ is a LUSQ algebra. This

result was implicitly proved in [32] – see Theorem 11.1.

In order to prove Theorem 5.4.5 some preparatory results are needed.

Lemma 5.4.7. Using the previous notation (as in Subsection 5.4.1), suppose that

condition (D) is satisfied. Then the WLUSQ algebra (Γ,Ψ,�) satisfies property (♦).

In particular, the costandard Γ-modules are uniserial, and ∇ (i, j) has composition

factors Li,j, Li,j−1 . . . , Li,1, ordered from the socle to the top. Moreover, for a module

M in F (∇), the number of costandard modules appearing in a ∇-filtration of M is

given by
∑n

i=1[M : Li,1], and TopM is a direct sum of modules of type Lx,1.
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Proof. Since condition (D) is satisfied, Proposition 5.4.3 implies that property (♦)

holds for Γ. The remaining claims in the statement of this lemma follow from Lemma

5.4.2.

Recall the notion of ∆-semisimple module, introduced in Section 3.2. In a similar

way, a module is said to be ∇-semisimple if it is a direct sum of costandard modules.

As seen in Section 3.2, the ∆-semisimple modules are specially nice when the under-

lying algebra is a RUSQ algebra: for instance, the property of being ∆-semisimple

is closed under taking submodules in this case (see Corollary 3.2.3). Naturally, the

∇-semisimple modules over a LUSQ algebra satisfy corresponding dual properties.

We wish to show that the algebra Γ is a LUSQ algebra when property (D) holds.

In order to achieve this, we start by showing that the ∇-semisimple Γ-modules are

particularly well behaved when condition (D) is satisfied.

Lemma 5.4.8. Using the previous notation (as in Subsection 5.4.1), assume that

condition (D) is satisfied. Let X in mod Γ and consider a short exact sequence

0 ∇ (i, j) X ∇ (k, l) 0, (5.6)

with (i, j), (k, l) ∈ Ψ. If TopX 6∼= Top∇ (k, l) then (5.6) splits.

Proof. We prove this statement by induction on j. For j = 1, we have that ∇ (i, j) =

∇ (i, 1) = Li,1. Thus, if TopX 6∼= Top∇ (k, l), then the corresponding short exact

sequence (5.6) splits.

Suppose now that j ≥ 2 and consider the pushforward diagram (recall that

∇ (i, j) /Li,j ∼= ∇ (i, j − 1), by Lemma 5.4.7)

0 0

Li,j Li,j

0 ∇ (i, j) X ∇ (k, l) 0

0 ∇ (i, j − 1) Z ∇ (k, l) 0

0 0

f

π π′

f ′

, (5.7)
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where TopX 6∼= Top∇ (k, l) (so TopX ∼= Top∇ (k, l) ⊕ Top∇ (i, j) ∼= Lk,1 ⊕ Li,1).

We want to prove that f is a split monic.

We must have TopZ 6∼= Top∇ (k, l). Indeed, TopZ ∼= Top∇ (k, l), together with

TopX 6∼= Top∇ (k, l), implies that TopX ∼= TopZ ⊕ Li,j ∼= Lk,1 ⊕ Li,j, which leads

to a contradiction as j ≥ 2. So TopZ 6∼= Top∇ (k, l) and the short exact sequence

in the bottom of (5.7) splits by induction. Let µ be such that µ ◦ f ′ = 1∇(i,j−1), and

consider the diagram

0 0

0 Li,j ∇ (i, j) ∇ (i, j − 1) 0

0 W X ∇ (i, j − 1) 0

Cokerh ∇ (k, l)

0 0

∃h f

π

µ◦π′

∼

, (5.8)

where W := Ker(µ ◦ π′).
Our goal is to prove that the central column of (5.8) splits. Suppose, by contra-

diction, that this exact sequence does not split. Then the left hand column of (5.8)

does not split either. As a consequence, the modules W and ∇ (k, l) have the same

top, namely TopW ∼= Top∇ (k, l) ∼= Lk,1. Therefore, there is a commutative diagram

Pi,j

Pk,1 W Li,j

∃ g∗
s

p0 h

,

where the map s is the composition of the natural projection with h. We have that

g∗ = HomA(X̃, g), for some map g : Yi,j −→ Yk,1 (see Proposition 1.2.4). By condition

(D), g = g′ ◦ ι for some map g′ : Yi,1 −→ Yk,1, where ι : Yi,j −→ Yi,1 is the inclusion

map. Write ι∗ := HomA(X̃, ι) and g′∗ := HomA(X̃, g′). Note that p0 ◦ g′∗ 6= 0: the

identity p0◦g′∗ = 0 implies that s = p0◦g∗ = p0◦g′∗◦ ι∗ = 0, which is a contradiction.
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As p0◦g′∗ : Pi,1 −→ W is nonzero, then the simple module Li,1 must be a composition

factor of W . Since j ≥ 2, then Li,1 must be a composition factor of Cokerh ∼= ∇ (k, l)

(look at the left hand column of (5.8)). So k = i.

Observe that the module W has a unique composition factor of the form Lx,1,

namely the module Lk,1 appearing in its simple top. But then the map g′∗ has to be

an epic: if g′∗ was not epic then the nonzero maps p0 ◦ g′∗ and p0 would give rise to

distinct composition factors of W of type Lx,1. Thus g′∗ is an epic, and hence it is an

isomorphism (as k = i). So g∗ is a monic, and we get a diagram

0 Pi,j Pi,1 Coker g∗ 0

0 Li,j W ∇ (i, l) 0

g∗

p0 ∃ t

h

,

where t is an epic. By Lemma 4.3.5,

Pi,j ∼= Im g∗ ⊆ Tr

 ⊕
(k,l): (k,l)6�(i,j−1)

Pk,l, Pi,1

 = Pi,j,

i.e. Im g∗ = Pi,j and Coker g∗ = Pi,1/Pi,j. In particular all composition factors of

Coker g∗ are of the form Lx,y, with (x, y) � (i, j − 1) (since Pi,1/Pi,j is filtered by the

standard modules ∆(i, 1), . . . ,∆(i, j − 1)). So (k, l) = (i, l) � (i, j − 1) ≺ (i, j), as

Li,l is a composition factor of Coker g∗. By part 2 of Lemma 1.4.5 the central column

of (5.8) splits – a contradiction.

As previously mentioned, we wish to prove Theorem 5.4.5, i.e. we want to show

that the WLUSQ algebra (Γ,Ψ,�) is a LUSQ algebra whenever condition (D) is

satisfied. Observe that the class of ∇-semisimple modules over a LUSQ algebra is

closed under factor modules (consider the dual version of Corollary 3.2.3). Next,

we prove that the class of ∇-semisimple Γ-modules is closed under quotients when

condition (D) is satisfied, which is in accordance with the statement of Theorem 5.4.5.

The following results can be deduced by dualising the reasoning in the proofs of

Corollary 3.2.3 and Proposition 3.2.7.

Corollary 5.4.9. Using the previous notation (as in Subsection 5.4.1), assume that

condition (D) is satisfied. Let X be in F (∇). Then X is ∇-semisimple if and only

if the number of simple summands of TopX coincides with the number of factors

in a ∇-filtration of X. Moreover, any quotient of a ∇-semisimple module is still

∇-semisimple.
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Proof. Let (Γ,Ψ,�) be an algebra obtained using the setup in Subsection 5.4.1 (so

Γ is a WLUSQ algebra, to be precise). Assume that condition (D) is satisfied. We

prove this result by dualising the arguments in the proof of Corollary 3.2.3.

Consider a∇-good module X. Let P(X) be the following statement: “the number

of simple summands of TopX coincides with the number of factors in a ∇-filtration

of X”. By Lemma 5.4.7, P(X) holds if and only if the composition factors of X of

type Lx,1 are exactly the summands of its top. From this, we see that the truth of

P(X) implies the truth of P(X ′) whenever X ′ a factor module of X (note that every

epic X −→ X ′ induces an epic RadX −→ RadX ′ – see Example 1.3.8 and Remark

1.3.10).

If X is a∇-semisimple module then the assertion P(X) is obviously true. Suppose

now that P(X) holds for X ∈ F (∇). We want to show that X is ∇-semisimple. We

prove this by induction on the number z of factors in a ∇-filtration of X. If z = 1

the result is immediate. Suppose that z ≥ 2, and consider an exact sequence

0 ∇ (i, j) X Coker f 0
f

,

with (i, j) ∈ Ψ and Coker f in F (∇). Since P(X) holds, then P(Coker f) also holds

by the previous remark. By induction, Coker f must be a ∇-semisimple module.

Consider now the pullback diagram

0 ∇ (i, j) Y ∇ (k, l) 0

0 ∇ (i, j) X Coker f 0

ι′

h

ι

f coker f

, (5.9)

where ι is a split monic mapping the costandard module∇ (k, l) into the∇-semisimple

module Coker f . We have that TopX ∼= Top∇ (i, j) ⊕ Top(Coker f), as the compo-

sition factors of X of type Lx,1 are exactly the summands of its top. According to

Remark 1.3.10, Top (−) is a right exact functor. By applying Top (−) to (5.9), we

get a new diagram where the bottom row remains exact, and consequently the top

row also remains exact. Hence TopY 6∼= Top∇ (k, l). By Lemma 5.4.8, the top row

of (5.9) splits. Since h is a split epic, there is a monic µ such that h ◦ µ = 1∇(k,l).

Because h and ι are split maps, it is easy to see that ι′ ◦ µ is a split monic. So

X ∼= ∇ (k, l)⊕X ′, for some module X ′ in modB. The module X ′ lies in F (∇) since

this category is closed under quotients. In fact, P(X ′) holds by the observation in

the beginning. By induction, the module X ′ must be ∇-semisimple. Therefore X is

∇-semisimple as well, which proves the first claim in the statement of the corollary.
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Let now X ′ be a quotient of a ∇-semisimple module X. Then P(X) is true, which

implies that P(X ′) holds. The first claim implies that X ′ is ∇-semisimple.

From Corollary 5.4.9, we conclude that ∇ is a cohereditary class in mod Γ (recall

Definition 1.3.13). The next result follows by dualisation of the arguments and the

reasoning in Subsection 3.2.2.

Proposition 5.4.10. Using the previous notation (as in Subsection 5.4.1), assume

that condition (D) is satisfied. Let X be a Γ-module in F (∇). Then X/Rej (X,∇) is

the (unique) largest ∇-semisimple factor module of X. Furthermore, Rej (X,∇) lies

in F (∇).

Remark 5.4.11. Note that every semisimple module is cogenerated by the set ∇.

Therefore TopX is a factor module of X/Rej (X,∇) for every X in mod Γ.

We are now finally in position of proving Theorem 5.4.5.

Proof of Theorem 5.4.5. Assume that condition (D) holds for the WLUSQ algebra

(Γ,Ψ,�). By Lemma 5.4.7, the Γ-modules ∇ (i, 1), 1 ≤ i ≤ n, are all the simple

costandard modules. In order to prove Theorem 5.4.5, one needs to show that Pi,1

lies in F (∇) for 1 ≤ i ≤ n (see Definition 5.4.1).

For this, consider the tilting module T (i, li). The module ∇ (i, li) is the largest ∇-

semisimple factor module T (i, li) /Y of T (i, li) such that Y ∈ F (∇). By Proposition

5.4.10, it follows that ∇ (i, li) ∼= T (i, li) /Rej (T (i, li) ,∇). According to Remark

5.4.11, the module T (i, li) must have simple top isomorphic to Top∇ (i, li) ∼= Li,1.

Since TopT (i, li) ∼= TopPi,1, there is an epic from Pi,1 to T (i, li). By Theorem 4.3.13,

there is a monic from Pi,1 to T (i, li). This implies that T (i, li) ∼= Pi,1, which concludes

the proof of the theorem.
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Appendix A

The relationship between R(RA)
and RAop: an example

Consider the quiver

Q =

1◦

◦
2

γ

αβ

δ

and define A := KQ/Rad2KQ. The projective indecomposable A-modules can be

represented as

1

1 2 1

α β ,
2

2
.

The injective indecomposable A-modules are

1 1

1
α β

,
1 2

2
.

Note that A is such that the projective and injective indecomposable A-modules have

all the same Loewy length and are rigid. Therefore, the statement in Theorem B

holds for A. That is, the algebras R (RA) and (RAop)
op are isomorphic. We shall

check this directly.
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A.1 The algebra R(RA)

Using the labelling described in Section 2.2 the ADR algebra RA of A is isomorphic

to the algebra KQ′/I, where

Q′ =

(1,1)
◦

(2,1)
◦

◦
(1,2)

◦
(2,2)

t
(2)
1 t

(2)
2

β(1)
α(1)

γ(1)

δ(1)

and I is the ideal generated by the relations α(1)t
(2)
1 = β(1)t

(2)
1 = 0, γ(1)t

(2)
1 = 0 and

δ(1)t
(2)
2 = 0. Notice that this agrees with Proposition 3.3.2.

The indecomposable tilting RA-modules are given

Q1,2 = T (1, 1) =

(1, 2) (1, 2)

(1, 1)

(1, 2)

α(1) β(1) ,

Q2,2 = T (2, 1) =

(1, 2) (2, 2)

(2, 1)

(2, 2)

,

T (1, 2) = L1,2 and T (2, 2) = L2,2. Observe that this is in accordance with Lemma

3.4.1.

It is not difficult to see that the quiver associated to the Ringel dual

R (RA) = EndRA (T (1, 1)⊕ T (1, 2)⊕ T (2, 1)⊕ T (2, 2)) op

of RA coincides with Q′. In fact, it is easy to check R (RA) is isomorphic to KQ′/I ′,

where I ′ is the ideal generated by the relations t
(2)
1 α(1) = t

(2)
1 β(1) = 0, t

(2)
2 δ(1) = 0,

t
(2)
2 γ(1) = 0. To see that these are all the relations needed one can compare the

dimensions of EndRA (T ) and KQ′/I ′.
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A.2 The algebra (RAop)op

Now we turn the attention to the algebra (RAop)
op. The algebra Aop is isomorphic to

KQ(op)/Rad2KQ(op), where

Q(op) =

1◦

◦
2

α′β′

γ′

δ′

is obtained from Q by reversing the arrows.

The projective indecomposble Aop-modules PAop

i are given by

1

1 1

α′ β′ ,
2

1 2
.

Using the labelling [i, j] for the the projective indecomposable RAop-modules

HomAop(GAop , P
Aop

i /Radj PAop

i )

it is not difficult to check that RAop has a presentation KQ′(op)/I
′, with

Q′(op) =

[1,1]
◦

[2,1]
◦

◦
[1,2]

◦
[2,2]

s
(2)
1 s

(2)
2

β′(1)α′(1)

γ′(1)

δ′(1)

and I ′ the ideal generated by the relations α′(1)s
(2)
1 = β′(1)s

(2)
1 = 0, δ′(1)s

(2)
2 = 0,

γ′(1)s
(2)
2 = 0.

So (RAop)
op is the quiver algebra of

[1,1]
◦

[2,1]
◦

◦
[1,2]

◦
[2,2]

s
(2)
1

β′(1) α′(1)

s
(2)
2

δ′(1)

γ′(1)

,

bound by the relations s
(2)
1 α′(1) = s

(2)
1 β′(1) = 0, s

(2)
2 δ′(1) = 0, s

(2)
2 γ′(1) = 0.
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A.3 Comparison

By comparing the quiver presentations of R (RA) and (RAop)
op, one concludes that

these algebras are isomorphic, with the simple (RAop)
op-modules labelled by [i, j]

corresponding to the R (RA)-modules with label (i, 3 − j). This observation agrees

with the statement of Theorem B.

140



Appendix B

Natural ways of constructing
hereditary preradicals

Recall the definitions of preradical, idempotent preradical and hereditary preradical

given in Section 1.3 (see Definitions 1.3.1, 1.3.4 and 1.3.7).

Let A denote a C-algebra. Idempotent preradicals can always be written in the

form Tr (Θ,−) for some class of modules Θ in ModA (consult Subsection 1.3.2).

However, they do not always arise “in nature” in this form.

Since hereditary preradicals are idempotent, they can always be defined as the

trace of a class of modules in ModA. We shall look at different natural ways of

constructing hereditary preradicals.

For this, fix an object M in ModA. Let

R : modA −→ modC

be a subfunctor of the functor

HomA (M,−) : modA −→ modC.

The abelian group R(X) ∈ modC is a C-submodule of HomA (M,X) for all X in

modA. Additionally, note that for X and Y in modA, we have g ◦ f ∈ R (Y ), for all

f ∈ R (X) and all g ∈ HomA (X, Y ). Finally, observe that R is an additive functor,

that is R (f1 + f2) = R (f1) +R (f2), which is equivalent to saying that R preserves

finite direct sums. Thus, a morphism f belongs to R (X), X =
⊕n

i=1 Xi, if and only

if, πi ◦ f is in R (Xi) for every i (here πi : X −→ Xi are the projection epics).

In what follows, whenever we say that R is a subfunctor of HomA (M,−), we

mean that R is a subfunctor of

HomA (M,−) : modA −→ modC.
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Example B.1. Consider the subfunctor

RadA(−,−) : modAop ×modA −→ modC

of

HomA (−,−) : modAop ×modA −→ modC,

defined by

RadA(X, Y ) = {f ∈ HomA (X, Y ) : 1X − g ◦ f is invertible, ∀g ∈ HomA (Y,X)},

for X and Y in modA. This functor is called the Jacobson radical of modA. Ob-

viously, for M in modA, RadA(M,−) is a subfunctor of HomA (M,−). Indeed, any

subfunctor I(−,−) of

HomA (−,−) : modAop ×modA −→ modC

gives rise to subfunctors I(M,−) of HomA (M,−).

Example B.2. Let f : M −→ M ′ be a morphism in ModA. The functor Rf :=

Im (HomA (f,−)), which assigns to every X in modA the set

Rf (X) = {g ◦ f : g ∈ HomA (M ′, X)},

is a subfunctor of HomA (M,−).

Example B.3. Let D be a subcategory of modA, closed under (finite) direct sums.

Consider the subfunctor

[D](−,−) : modAop ×modA −→ modC

of

HomA (−,−) : modAop ×modA −→ modC,

which assigns to every X, Y in modA the set

[D](X, Y ) = {f ∈ HomA (X, Y ) : f factors through a module in D}.

This produces the subfunctors [D](M,−) of HomA (M,−).

Any subfunctor R of HomA (M,−) gives rise to a functor

τR : modA −→ modA,
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defined by

τR (X) =
∑

f : f∈R(X)

Im f.

Observe that the module τR (X) is generated by M .

Note that the functor τR is a subfunctor of 1modA, or, in other words, τR is a

preradical in modA. Thus, τR has several good properties, in particular, it is an

additive functor, so it preserves finite direct sums. It is not difficult to see that τR

is actually a hereditary preradical in modA. In the next lemma we summarise some

properties of these preradicals.

Lemma B.4. Let R be a subfunctor of HomA (M,−), and let X be in ModA. Then:

1. τR is an subfunctor of the identity functor which is left exact;

2. if Y is a submodule of X then τR (Y ) = τR (X) ∩ Y ;

3. τR (X) is generated by M ;

4. τR preserves finite direct sums, in particular, if X =
⊕n

j=1 Xj then

τR

(
n⊕
j=1

Xj

)
=

n⊕
j=1

τR (Xj) =
n⊕
j=1

τR (X) ∩Xj.

5. if C =
⊕n

j=1Cj and R = I(C,−) for some subfunctor I(−,−) of

HomA (−,−) : modAop ×modA −→ modC,

then τR(X) =
∑n

j=1 τI(Cj ,−)(X).
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Notation

All modules are left modules.

⊂ proper inclusion

⊆ inclusion

Z≥0 nonnegative integers

Z>0 positive integers

A,B C-algebras (mostly Artin algebras), page 10

C commutative artinian ring with unit

K field

(Φ,v) partial order

1M identity map on a set M (or identity functor if M is a category)

For a given C-algebra A

ModA category of (left) A-modules

modA category of the (left) A-modules which are finitely generated over C,

page 8

Aop opposite algebra of A

D standard duality for an Artin algebra A, page 10

projA category of the projective modules in modA

gl. dimA global dimension of A

fin. dimA finitistic dimension of A (Artin algebra), page 95
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rep. dimA representation dimension of A (Artin algebra), page 95

For a given A-module M (A C-algebra)

RadM radical of M , page 10

SocM socle of M , page 10

TopM top of M , page 10

LL(M) Loewy length of M in modA, page 30

P0 (M) projective cover of M ∈ modA

Ω (M) kernel of the projective cover P0 (M) −→M of M ∈ modA

Ωi (M) Ω (Ωi−1 (M))

Pi (M) P0 (Ωi (M))

proj. dimM projective dimension of M

l(M) (Jordan–Hölder) length of M as a C-module

For a class Θ of modules in modA (A C-algebra)

add Θ category of modules isomorphic to summands of finite direct sums of

modules in Θ

F (Θ) category of the modules possessing a Θ-filtration, page 23

For given A-modules M and N (A C-algebra)

[M : N ] multiplicity of a simple module N in the composition series of M ∈
modA, page 10

For a given morphism f : M −→ N

Im f image of f

Ker f kernel of f

Coker f cokernel of f (i.e. N/ Im f)
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coker f canonical epic N −→ Coker f

ker f canonical monic Ker f −→M

For a given quasihereditary algebra (B,Φ,v)

∆ (i) standard module with label i ∈ Φ, page 21

∇ (i) costandard module with label i ∈ Φ, page 22

∆ set of the all standard modules, page 22

∇ set of the all costandard modules, page 22

(M : ∆ (i)) multiplicity of ∆ (i) in a ∆-filtration of M ∈ F (∆)

(M : ∇ (i)) multiplicity of ∇ (i) in a ∇-filtration of M ∈ F (∇)

For a given RUSQ algebra (B,Φ,v)

∆. sslM ∆-semisimple length of a module M ∈ F (∆), page 61

δ (−) Tr (∆,−), page 59

δm (−) δ • · · · • δ (m times), page 59

147



148



Bibliography

[1] A. M. Adamovich and G. L. Rybnikov. Tilting modules for classical groups and

Howe duality in positive characteristic. Transform. Groups, 1(1-2):1–34, 1996.

[2] F. W. Anderson and K. R. Fuller. Rings and categories of modules, volume 13

of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition,

1992.

[3] S. Ariki. Finite dimensional Hecke algebras. In Trends in representation theory

of algebras and related topics, EMS Ser. Congr. Rep., pages 1–48. Eur. Math.
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[32] C. Geiß, B. Leclerc, and J. Schröer. Kac-Moody groups and cluster algebras.

Adv. Math., 228(1):329–433, 2011.

[33] I. M. Gel’fand and V. A. Ponomarev. Model algebras and representations of

graphs. Funct. Anal. Appl., 13(3):157–166, 1979.

[34] J. A. Green. Polynomial representations of GLn, volume 830 of Lecture Notes in

Mathematics. Springer, Berlin, augmented edition, 2007. With an appendix on

Schensted correspondence and Littelmann paths by K. Erdmann, Green and M.

Schocker.

[35] D. Happel. Triangulated categories in the representation theory of finite-

dimensional algebras, volume 119 of London Math. Soc. Lecture Note Ser. Cam-

bridge Univ. Press, Cambridge, 1988.

151

http://arxiv.org/abs/math/0703039


[36] A. Henke and S. Koenig. Schur algebras of Brauer algebras I. Math. Z., 272(3-

4):729–759, 2012.

[37] A. Henke and S. Koenig. Schur algebras of Brauer algebras, II. Math. Z., 276(3-

4):1077–1099, 2014.

[38] K. Igusa and G. Todorov. On the finitistic global dimension conjecture for Artin

algebras. In Representations of algebras and related topics, volume 45 of Fields

Inst. Commun., pages 201–204. Amer. Math. Soc., Providence, RI, 2005.

[39] O. Iyama. Finiteness of representation dimension. Proc. Amer. Math. Soc.,

131:1011–1014, 2002.

[40] O. Iyama and I. Reiten. 2-Auslander algebras associated with reduced words in

Coxeter groups. Int. Math. Res. Not. IMRN, (8):1782–1803, 2011.

[41] O. Iyama and Y. Yoshino. Mutation in triangulated categories and rigid Cohen-

Macaulay modules. Invent. Math., 172(1):117–168, 2008.

[42] T. Jost. Morita equivalence for blocks of Hecke algebras of symmetric groups. J.

Algebra, 194(1):201–223, 1997.

[43] V. G. Kac. Infinite-Dimensional Lie Algebras. Progr. Math. Cambridge Univ.

Press, 1994.

[44] S. Koenig and C. Xi. When is a cellular algebra quasi-hereditary? Math. Ann.,

315(2):281–293, 1999.

[45] J. Külshammer. In the bocs seat: Quasi-hereditary algebras and representation

type. ArXiv e-prints, (arXiv:1601.03899), 2016.

[46] M. Lanzilotta, E. Marcos, O. Mendoza, and C. Sáenz. On the relative socle for
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